K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

                                                     Bài giải

\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(x^3-3x^2+9x+3x^2-9x+27-x\left(x^2-2^2\right)=15\)

\(x^3+27-x^3+2^2x=15\)

\(27-4x=15\)

\(4x=12\)

\(x=3\)

14 tháng 8 2020

x bằng 3 nha

21 tháng 6 2017

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Leftrightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3-6x=0\)

\(\Leftrightarrow-x=27\)

\(\Leftrightarrow x=-27\)

21 tháng 6 2017

Cảm ơn bạn nha!

Mk là bạn nhé.

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0

\(\Rightarrow\)24x+10=0

\(\Rightarrow\)24x=-10

\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)

25 tháng 7 2021

b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2

\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2

\(\Rightarrow\)x2​-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2

\(\Rightarrow\)3x2-18x-22=3x2+2x+17

\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0

\(\Rightarrow\)-20x-39=0

\(\Rightarrow\)-20x=39

\(\Rightarrow\)x=\(-\dfrac{39}{20}\)

Ta có: \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+5x-10=3x^2-12x-5x+20\)

\(\Leftrightarrow-2x-22+17x-20=0\)

\(\Leftrightarrow15x=42\)

hay \(x=\dfrac{14}{5}\)

8 tháng 1 2022

\(\left(3x-7\right)-\left(2x+2\right)=-15.\Leftrightarrow3x-7-2x-2=-15.\Leftrightarrow x-9=-15.\Leftrightarrow x=-6.\)

Vậy x = - 6.

1 tháng 9 2023

c) \(x^2-9=2\cdot\left(x+3\right)^2\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

d) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)

\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)

1 tháng 9 2023

a) \(x^2-9=2\left(x+3\right)^2\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)

\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

c) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)

=>-4x=5

hay x=-5/4

b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)

=>42x=41

hay x=41/42

26 tháng 5 2022

`a)(10x+9)x-(5x-1)(2x+3)=8`

`<=>10x^2+9x-10x^2-15x+2x+3=8`

`<=>-4x=5`

`<=>x=-5/4`     Vậy `S={-5/4}`

`b)(3x-5)(7-5x)+(5x+2)(3x-2)-2=0`

`<=>21x-15x^2-35+25x+15x^2-10x+6x-4-2=0`

`<=>42x=41`

`<=>x=41/42`       Vậy `S={41/42}`

6 tháng 8 2020

\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x-4\right)\left(x+4\right)+3x^2\)\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)+3\left(x^2-4x+4\right)=x^2+2x+1-\left(x^2-4^2\right)+3x^2\)\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+12=x^2+2x+1-x^2+16+3x^2\)

\(\Leftrightarrow-20x=39\)

\(\Leftrightarrow x=\frac{-39}{20}\)

Vậy \(x=\frac{-39}{20}\)