tìm gtnn của bt (x-3)2+(x-2) 2
MN GIÚP MIK VS MIK CẦN CỰC KÌ GẤP TKS MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)
Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
=> \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)
=> \(-Q=\left(x^2+x\right)^2-25\)
Có: \(\left(x^2+x\right)^2\ge0\forall x\)
=> \(-Q\ge-25\forall x\)
=> \(Q\le25\)
DẤU "=" XẢY RA <=> \(\left(x^2+x\right)^2=0\)
<=> \(x^2+x=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
VẬY Q MAX = 25 <=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(P=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)-36\)
\(P=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)-36\)
\(P=\left(x^2-5x-6\right)\left(x^2-5x+6\right)-36\)
\(P=\left(x^2-5x\right)^2-6^2-36\)
\(P=\left(x^2-5x\right)^2-72\)
Vì \(\left(x^2-5x\right)^2\ge0\Leftrightarrow\left(x^2-5x\right)^2-72\ge-72\Leftrightarrow P\ge-72\Leftrightarrow min_P=-72\)
Đẳng thức xảy ra \(\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy GTNN của P là -72 khi x = 0 hoặc x = 5
Ta nhận thấy vế trái có 100 số hạng
=> \(\left(x+x+...+x\right)+\left(1+2+...+100\right)=5500\)
<=> \(100x+\frac{100.101}{2}=5500\)
<=> \(100x+5050=5500\)
<=> \(x=4,5\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5550\)
\(< =>x+1+x+2+x+3+...+x+100=5550\)
\(< =>100x+\frac{100\left(100+1\right)}{2}=5550\)
\(< =>100x+\frac{10100}{2}=5550\)
\(< =>100x+5050=5550\)
\(< =>100x=500< =>x=\frac{500}{100}=5\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
x/2=y/3=x.y/2.3=216/6=36
x/2=36
x=72
y/3=36
y=108
ta có \(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+5x+6\right)+x^2+10x+25=7\)
\(\Leftrightarrow4x+10=0\Leftrightarrow x=-\frac{5}{2}\)
Bạn áp dụng hằng đẳng thức số 1, nhân phá ngoặc là Ok nhé
\(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+3x+2x+6\right)+x^2+10x+25-7=0\)
\(\Leftrightarrow2x^2+14x+22-2x^2-6x-4x-12=0\)
\(\Leftrightarrow4x+10=0\)
\(\Leftrightarrow4x=-10\)
\(\Leftrightarrow x=\frac{-5}{2}\)
( x - 3 )2 + ( x - 2 )2
= x2 - 6x + 9 + x2 - 4x + 4
= 2x2 - 10x + 13
= 2( x2 - 5x + 25/4 ) + 1/2
= 2( x - 5/2 )2 + 1/2
\(2\left(x-\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\frac{5}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu " = " xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy GTNN của biểu thức = 1/2 , đạt được khi x = 5/2