trong số 3 141 592 653, tính phần trăm tổng số lần xuất hiện của các chữ số 1, 3 và 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có 3 chữ số có dạng \(\overline{abc}\)
Trong đó \(a\) có 3 cách chọn
\(b\) có 2 cách chọn
\(c\) có 1 cách chọn
Số các số có 3 chữ số mà mỗi số có đủ ba chữ số trên và mỗi chữ số chỉ xuất hiện một lần là:
3 \(\times\) 2 \(\times\) 1 = 6 (số)
Các chữ số: 3; 5; 1 xuất hiện số lần như nhau ở các hàng trăm, hàng chục, hàng đơn vị và xuất hiện số lần là:
6 : 3 = 2 (lần)
Tổng các chữ số vừa được lập ở trên là:
(1 + 3 + 5) \(\times\)(100 + 10+1)\(\times\)2 = 1998
Đáp số: 1998
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Lập số có 10 chữ số sao cho chữ số 3 xuất hiện 3 lần và các chữ số khác xuất hiện 1 lần: có \(\dfrac{10!}{3!}\) cách
Lập số có 10 chữ số sao cho số 3 xuất hiện 3 lần, các chữ số khác xuất hiện 1 lần và chữ số 0 đứng đầu: \(\dfrac{9!}{3!}\) cách
Vậy có: \(\dfrac{10!-9!}{3!}\) số thỏa mãn
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
1 với 3 = 100 %
1 với 5 = 100 %
3 với 5 = 100%