Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left[7-\left(x-y\right)^2\right]=2\left(x^2+1\right)\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)
\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\)
*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:
\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)
*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :
\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)
.Nếu x=0⇒y=0
.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...
Câu b)
\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)
Thay x=1 vào PT (2) ta có:
(2) ⇔12-3.1.y+4=0
⇔1-3y +4=0
⇔-3y+5=0
⇔y=\(\dfrac{5}{3}\)
Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
Biến đổi pt dưới:
\(x^2-4x+4+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)
Thay vào pt đầu giải bt
\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)
Đk: \(x+2y+1\ge0,x+4y+4\ge0\)
\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)
\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\)
*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)
Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).
Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.
*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .
Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+1\right)+\left(2y^2-2xy+8y\right)=0\\y\left[7-\left(x-y\right)^2\right]=2\left(x^2+1\right)\end{matrix}\right.\)
\(\Rightarrow y\left[7-\left(x-y\right)^2\right]+2y^2-2xy+8y=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\left(ktm\right)\\7-\left(x-y\right)^2+2y-2x+8=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-\left(x-y\right)^2-2\left(x-y\right)+15=0\)
Đặt \(x-y=t\Rightarrow-t^2-2t+15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y+3\\x=y-5\end{matrix}\right.\)
Thế vào pt đầu: ....