Cho tam giác ABC, vẽ đường cao AH. Lấy E và F sao cho AB là trung trực của HE, AC là trung trực của HF.Nối E với F cắt AB tại M , cắt AC tại N. CMR : MN song song với EH, NB song song với FH.
(Ai giải nhanh nhất mình sẽ tick)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Vì AC là trung trực của HF (gt)
=>AC vuông góc với HF (ĐN)
IH=IF (ĐN)
Vì tam giác MSE=tam giác MSH ( CM câu a) =>ME=MH ( 2 cạnh tương ứng)
Xét tam giác AES vuông tại S và tam giác ASH vuông tại S có:
Chung SA
SE=SH ( CM câu a)
=>Tam giác AES=tam giác ASH ( 2 cạnh góc vuông)
=> AE=AH ( 2 cạnh tương ứng)
Xét tam giác AME và tam giác AMH có
AE=AH ( CM trên)
Chung AM
ME=MH ( CM trên)
=> Tam giác AME= tam giác AMH ( cạnh-cạnh- cạnh)
=>^AEM=^AHM ( 2 góc tương ứng) (1)
Xét tam giác NHI vuông tại I và tam giác NFI vuông tại I có:
Chung NI
IH=IF ( CM trên)
=> Tam giác NHI= tam giác NGI ( 2 cạnh góc vuông)
=> NH=NF ( 2 cạnh tương ứng)
Xét tam giác AHI vuông tại I và tam giác AFI vuông tại I có:
Chung AI
IH=IF ( CM trên)
=> Tam giác AHI= tam giác AFI ( 2 cạnh góc vuông)
=> AH=AF( 2 cạnh tương ứng)
a)Gọi HE cắt AB tại S, HE cắt AC tại I
Vì AB là đường trung trực HE(gt)
=>AB vuông góc với HE ( ĐN)
SE=SH ( ĐN)
Xét tam giác MSE vuông tại S và tam giác MSH vuông tại H có:
Chung MS
SE=SH ( CM trên)
=> Tam giác MSE=Tam giác MSH ( 2 cạnh góc vuông)
=> ^EMB=^BMH, mà tia MB nằm giữa hai tia ME,MH
=> MB là tia phân giác ^EMH
Do \(AB\) là trung trực của \(HD\) nên \(AH\) nên \(AH=AD\) . Từ đó suy ra \(AB\) là phân giác góc \(DAH\) . Vậy góc \(A_1=A_2\) . Tương tự \(A_3=A_4\)
Từ đó suy ra \(A_2+A_4=A_1+A_3=90^o\)
Vậy góc \(A_1+A_2+A_3+A_4=180^o\)
Chẳng biết đúng hay sai mới chuần bị lên lớp 6
a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).
Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;
b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.