Tìm x:
-1/4 - 1/3 : (3x) = -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3/2.|x - 5/3| - 4/5 = 4/3.|x - 5/3| + 1
<=> 3/2.|x - 5/3| = 4/3.|x - 5/3| + 1 + 4/5
<=> 3/2.|x - 5/3| = 9/5 + 4|x - 5/3|/3
<=> 3/2.|x - 5/3| - 4.|x - 5/3|/3 = 9/5
<=> |x - 5/3|/6 = 9/5
<=> |x - 5/3| = 9/5.6
<=> |x - 5/3| = 54/5
<=> x - 5/3 = 54/5 hoặc x - 5/3 = -54/5
x = 54/5 + 5/3 x = -54/5 - 5/3
x = 187/15 x = -137/15
b) 2.|3x + 1| = 1/3.|3x + 1| + 5
<=> 2.|3x + 1| - 1/3.|3x + 1| = 5
<=> 5/3.|3x + 1| = 5
<=> 5.|3x + 1| = 5.3
<=> 5.|3x + 1| = 15
<=> |3x + 1| = 15 : 5
<=> |3x + 1| = 3
3x + 1 = 3 hoặc 3x + 1 = -3
3x = 3 - 1 3x = -3 - 1
3x = 2 3x = -4
x = 2/3 x = -4/3
=> x = 2/3 hoặc x = -4/3
c) làm tương tự câu a) mình hơi lời
Làm câu c) cho
\(\frac{1}{4}-\frac{5}{2}\left|3x-\frac{1}{5}\right|=\frac{2}{3}\left|3x-\frac{1}{5}\right|-\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{4}+\frac{2}{3}=\frac{2}{3}\left|3x-\frac{1}{5}\right|+\frac{5}{2}\left|3x-\frac{1}{5}\right|\)
\(\Leftrightarrow\frac{3}{12}+\frac{8}{12}=\left|3x-\frac{1}{5}\right|\left(\frac{2}{3}+\frac{5}{2}\right)\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|\left(\frac{4}{6}+\frac{15}{6}\right)=\frac{11}{12}\)
\(\Leftrightarrow\frac{19}{6}\left|3x-\frac{1}{5}\right|=\frac{11}{12}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{12}.\frac{6}{19}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{38}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{5}=\frac{11}{38}\\3x-\frac{1}{5}=-\frac{11}{38}\end{cases}}\)
Giải tiếp nha
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
1/4 - 5/2 x |3x - 1/5|=2/3 x |3x - 1/5|- 2/3
Tương đương với 1/4+2/3 = 2/3 x l3x - 1/5l + 5/2 x l3x-1/5l
11/12 = l3x - 1/5l x (2/3 + 5/2)
11/12 = l3x -1/5 l x 19/6
=> l3x - 1/5l = 11/12 : 19/6 = 11/38
Xét 2 trường hợp:
+ 3x - 1/5 = 11/38 => 3x = 11/38 + 1/5 = 93/190 => x = 93/190 : 3 = 31/190
+ 3x - 1/5 = -11/38 => 3x = -11/38 + 1/5 = -17/190 => x = -17/190 : 3 = -17/570
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
-1/4-1/3:(3x)=-5
1/3:(3x)=-1/4+5
1/3:(3x)=19/4
(3x)=1/3:19/4
(3x)=4/57
x=4/57:3
x=4/171
vậy x=4/171
\(-\frac{1}{4}-\frac{1}{3}\div\left(3x\right)=-5\)
\(\frac{1}{3}\div\left(3x\right)=\frac{1}{4}+5\)
\(\frac{1}{3}\div\left(3x\right)=\frac{19}{4}\)
\(\left(3x\right)=\frac{1}{3}\div\frac{19}{4}\)
\(\left(3x\right)=\frac{4}{57}\)
\(x\)\(=\)\(\frac{4}{57}\div3\)
\(x\)\(=\) \(\frac{4}{171}\)
Chúc bạn học tốt !