K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Số 1 bỏ ik nha.

12 tháng 8 2020

Giá trị của x thì A có nghĩa là : \(x\ne0\)

dễ mà bạn

15 tháng 11 2021

\(ĐK:\left\{{}\begin{matrix}x^2-1+2\sqrt{x^2-1}+1\ge0\\x^2-1-2\sqrt{x^2-1}+1\ge0\\x^2-1\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x^2-1}+1\right)^2\ge0\\\left(\sqrt{x^2-1}-1\right)^2\ge0\\x^2\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

15 tháng 11 2021

 

ĐK:⎧⎪⎨⎪⎩x2−1+2√x2−1+1≥0x2−1−2√x2−1+1≥0x2−1≥0⇔⎧⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪⎩(√x2−1+1)2≥0(√x2−1−1)2≥0x2≥1⇔[x≥1x≤−1

a: ĐKXĐ: x^2-1>=0 

=>x>=1 hoặc x<=-1

\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

\(=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)

x>=căn 2

=>x^2>=2

=>x^2-1>=1

=>căn x^2-1>=1

=>căn(x^2-1)-1>=0

=>\(A=\sqrt{x^2-1}+1-\sqrt{x^2+1}+1=2\)

19 tháng 7 2021

a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa

b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)

nên căn luôn có nghĩa

c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)

h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)

i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: x>-4

h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

 

2 tháng 9 2021

a, ĐKXĐ: \(x^2-3\ge0\Rightarrow x^2\ge3\Rightarrow x\ge\sqrt{3}\)

b, \(\left\{{}\begin{matrix}x-2\ne0\\x-2\ge0\end{matrix}\right.\Rightarrow x-2>0\Rightarrow x>2\)

c, \(\left\{{}\begin{matrix}3-2x\ne0\\\dfrac{1}{3-2x}\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2x\ne3\\3-2x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{3}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)

2 tháng 9 2021

\(\sqrt{x^2-3}\)

ĐKXĐ: x > 1

\(\dfrac{x}{x-2}+\sqrt{x-2}\)

ĐKXĐ: x > 2

\(\sqrt{\dfrac{1}{3-2x^2}}\)

ĐKXĐ: x < 1,224744871 \(\approx\) 1,22

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(-1\le x\le1\)

c: ĐKXĐ: \(x\le-2\)

4 tháng 9 2021

chị giỏi quá

2 tháng 9 2021

\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2x\sqrt{x^2-1}}\\ A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\\ A=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)

\(a,\) A có nghĩa \(\Leftrightarrow x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

\(b,x\ge\sqrt{2}\Leftrightarrow\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\\ \Rightarrow A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

b) Để P<1 thì \(2\sqrt{x}< 2\)

\(\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)

29 tháng 7 2021

ủa bạn ơi, sao cái dấu bằng đầu tiên đã ra như vậy rồi, mình ko hiểu