/x+1/ +/ x+2/ =1 tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
\(6\left(x+1\right)^2-2\left(x+1\right)^3-2\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow6\left(x^2+2x+1\right)-2\left(x^3+3x^2+3x+1\right)-2\left(x^3+x^2+x-x^2-x-1\right)=1\)
\(\Leftrightarrow6x^2+12x+6-2x^3-6x^2-6x-2-2x^3-2x^2-2x+2x^2+2x+2=1\)
\(\Leftrightarrow-4x^3+6x+5=0\)
\(\Leftrightarrow x=1.5233401602\)
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\).
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(=-\frac{1}{x+3}=\frac{1}{2010}\)
\(x=2010-\left(-3\right)=2013\)
a,\(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b,\(B\left(x\right)=\left(2x^2-8x\right)-\left(3x+2x^2\right)\)
\(=2x^2-8x-3x-2x^2\)
=\(-11x\)
c,\(-11x=0\)
\(\Rightarrow x=0\)
\(A\left(x\right)=2x^2-8x\)
\(\Rightarrow2x^2-8x=0\)
\(\Rightarrow x\left(2x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=8\Rightarrow x=4\end{matrix}\right.\)
\(B\left(x\right)=-3x+2x^2\)
\(B\left(x\right)=2x^2-3x\)
\(2x^2-3x=0\)
\(\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left|x+1\right|+\left|x+2\right|=1\)
\(\Rightarrow\left|x+1+x+2\right|=1\)
\(\Rightarrow\left|2x+3\right|=1\)
\(\Rightarrow\orbr{\begin{cases}2x+3=1\\2x+3=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=-2\\2x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)
Vậy \(x=-1;x=-2\)
Mình nghĩ vậy
Xét \(x< 1\)thì ta có : \(-x-1-x-2=1\)
\(< =>-2x=4< =>x=\frac{4}{-2}=-2\)
Xét \(1\le x< 2\)thì ta có : \(x+1-x-2=1\)
\(< =>-1=1\)(vô lí)
Xét \(x\ge2\)thì ta có : \(x+1+x+2=1\)
\(< =>2x=1-3=-2< =>x=-1\)
Vậy \(x=\left\{-1;-2\right\}\)