K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

\(P=x+\frac{9}{x-2}+2018\)

\(=\left(x-2\right)+\frac{9}{x-2}+2020\)

\(\ge2\sqrt{\frac{\left(x-2\right)9}{x-2}}+2020\)

\(=2\sqrt{9}+2020=2026\)

Dấu = xảy ra khi và chỉ khi \(x=5\)

Vậy \(Min_P=2026\)khi \(x=5\)

12 tháng 8 2020

\(P=\left(x-2\right)+\frac{9}{x-2}+2020\)

\(P\ge2.\sqrt{\frac{\left(x-2\right).9}{x-2}}+2020\)

=> \(P\ge6+2020=2026\)

"=" xảy ra <=> \(x-2=\frac{9}{x-2}\)

<=> \(\left(x-2\right)^2=9\)

<=> \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

Do \(x>2\)    => \(x=5\)

VẬY P MIN = 2026 <=> x = 5.

hok chăm vào -,- 

\(P=x+\frac{9}{x-2}+2018=x-2+\frac{9}{x-2}+2020\ge2\sqrt{\left(x-2\right).\frac{9}{x-2}}+2020=2026\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x-2=\frac{9}{x-2}\)\(\Leftrightarrow\)\(\left(x-2\right)^2=9\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

... 

\(x=-1\) loại nhé 

24 tháng 9 2023

a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)

\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{4x}{\sqrt{x}-3}\)

b) \(P=\dfrac{4x}{\sqrt{x}-3}\)

\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)

Theo BĐT côsi ta có:

\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)

Vậy: \(P_{min}=36\Leftrightarrow x=36\) 

NV
22 tháng 2 2021

\(P=\dfrac{1}{2xy}+\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}+\dfrac{4}{2xy+x^2+y^2}=\dfrac{6}{\left(x+y\right)^2}=6\)

\(P_{min}=6\) khi \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Cách khác:

Đặt $xy=t$. Bằng $AM-GM$ dễ thấy $t\leq \frac{1}{4}$

\(P=\frac{1}{xy}+\frac{1}{(x+y)^2-2xy}=\frac{1}{xy}+\frac{1}{1-2xy}=\frac{1}{t}+\frac{1}{1-2t}\)

\(=\frac{1}{t}-4+\frac{1}{1-2t}-2+6=\frac{(1-4t)(1-3t)}{t(1-2t)}+6\geq 6\) với mọi $t\leq \frac{1}{4}$

Vậy $P_{\min}=6$ khi $x=y=\frac{1}{2}$

31 tháng 12 2016

Bạn học 7 hằng đẳng thức chưa?

10 tháng 1 2018

Điều kiên (x<>1,X>0) xong rút gọn đi :)))

10 tháng 1 2018

TRẢ LỜI HẾT MAU :(

NV
2 tháng 9 2021

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

4 tháng 8 2021

còn cách làm khác không ạ?