K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Đề bài bị thiếu bạn ơi.

Có: \(3n-1⋮3n-4\)

\(\Rightarrow3n-4+3⋮3n-4\)

\(\Rightarrow3⋮3n-4\)

\(\Rightarrow3n-4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{\frac{5}{3};1;\frac{7}{3};\frac{1}{3}\right\}\)

Vậy...

11 tháng 8 2020

\(3n-1⋮3n-4\)

\(\Leftrightarrow3n-4+3⋮3n-4\)

\(\Leftrightarrow3⋮3n-4\)

\(\Leftrightarrow3n-4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

3n - 41-13-3
3n537-1
n5/317/3-1/3
30 tháng 7 2015

a)38-3n chia hết cho n

=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}

b)n+5 chia hết cho n+1

=>n+1+4 chia hết cho n+1

=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}

=>n thuộc{0;1;3}

c)3n+4 chia hết cho n-1

3(n-1)+7chia hết cho n-1

=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}

=> n thuộc{2;8}

d)3n+2 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}

=>n thuộc{2;6}

có j ko hiểu hỏi mk

18 tháng 12 2023

a, 4n + 5 ⋮ n  ( n \(\in\) N*)

           5 ⋮  n

\(\in\)Ư(5) = {-5; -1; 1; 5}

Vì n \(\in\) N nên n \(\in\) {1; 5}

b, 38 - 3n ⋮ n  (n \(\in\) N*)

     38 ⋮ n

\(\in\) Ư(38)

38 =  2.19

Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}

Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}

18 tháng 12 2023

c, 3n + 4  ⋮ n - 1 ( n \(\in\) N; n ≠ 1)

   3(n - 1) + 7 ⋮ n - 1  

                   7 ⋮ n  -1

  n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

lập bảng ta có:

n - 1 -7 -1 1 7
n -6 (loại) 0 2

8

 

Theo bảng trên ta có n \(\in\) {0 ;2; 8}

 

16 tháng 12 2023

a,  4n + 3 ⋮ 2n - 1

    4n - 2 + 5 ⋮ 2n - 1

    2.(2n - 1) + 5 ⋮ 2n - 1

                      5 ⋮ 2n - 1

    2n  -1 \(\in\) Ư(5) = {-5; -1; 1; 5}

    n \(\in\) {-2; 0; 1; 3}

16 tháng 12 2023

b, 3n - 5 ⋮ n + 1

   3n + 3 - 8 ⋮ n + 1

   3.(n + 1) - 8 ⋮ n + 1

                   8 ⋮ n + 1

  n + 1 \(\in\) Ư(2) = {-8; -4; -2; -1; 1; 2; 4; 8}

 n \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}

 

trả lời...................................

đúng nhé..............................

hk tốt.........................................

8 tháng 1 2019

1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4 

                   = 3 ( n - 1 ) + 7 

Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 ) 

Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1 

Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 } 

Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK ) 

Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK ) 

Vậy n = 8 hoặc n = 2 là giá trị cần tìm 

29 tháng 11 2016

Ta có: 3n+5 chia hết cho 3n-1

=> 3n - 1 + 6 chia hết cho 3n - 1

=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết  cho 3n - 1

=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }

=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }

Mà chỉ có 3 chia hết cho 3 => n=1

29 tháng 11 2016

Thank you

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

9 tháng 4 2016

(3n+2):(n-1) = 3 + 5/(n-1) 
Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

9 tháng 4 2016

n="1" Ta thay n=1 thì 1+1/3*1-2

1+1=2 (1)

3*1-2=1 

1+1/3*1-2=2/1=2