Trên một đoạn đường thẳng có 3 người chuyển động. Người 1 đi xe máy với v1=30km/h, Xe đạp đi với v2=20km/h và người chạy bộ. Ban đầu người chạy bộ cách người đi xe đạp một khoảng bằng \(\frac{1}{4}\) khoản cách từ người đó đến người đi xe máy. Coi chuyển động ba người là chuyển động đều. v3= ? sau đó 3 người cùng gặp nhau tại một điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hỏi 1 chút gặp nhau theo cách nào người đi xe máy thù cứ mãi xa, làm sao mà gặp đc
Gọi A là vị trí người đi xe máy, B là vị trí ng đi xe đạp và C là vị trí ng đi bộ
Trường hợp 1 : Khi ng đi bộ đi từ C --> A ( tức là cùng chiều vs xe đạp, ngược chiều với xe máy ) gặp nhau tại D
Ta có
\(s_{xe.máy}=45t; s_{xe.đạp}=xt;s_{đi.bộ}=15t\)
Ta lại có \(s_{AC}=s_{xm\left(xe.máy\right)}+s_{b\left(bộ\right)}\)
\(s_{BD}=s_{xd\left(xe.đạp\right)}=s_{BC}+s_b\\ \Rightarrow s_{BC}=s_{xd}-x_b\\ Mà:s_{AC}=2s_{BC}\\ \Rightarrow s_{xm}+s_b=s_{xd}-s_b\\ \Leftrightarrow45t+xt=15t-xt\\ \Rightarrow x=-15\left(loại\right)\)
-----> Trường hợp này ko thể xảy ra
Trường hợp 2 : Khi người đi bộ đi từ C --> B ( cùng chiều xm ngược chiều xd ) gặp nhau tại D
Ta có
\(s_{xm}=s_{AD}=s_{AC}+s_{CD}=45t\\ \Leftrightarrow s_{AC}=45t-s_{CD}=45t-xt\\ s_b=s_{CD}=xt\\ s_{xd}=s_{BD}=15t\\ Mà:\\ s_{BD}+s_{CD}=s_{BC}=\dfrac{1}{2}s_{AC}\\ \Leftrightarrow15t+xt=\dfrac{45t-xt}{2}\\ \Leftrightarrow30t+2xt=45t-xt\\ \Leftrightarrow3x=15\Rightarrow x=5\)
Lê Thanh Tịnh
Gọi vị trí ban đầu của người đi xe đạp ban đầu ở A , người đi bộ ở B , người đi xe máy ở C ; S là chiều dài quãng đường AC tính theo đơn vị km ; Vận tốc người đi xe đạp là V1 ; Vận tốc người đi xe máy là V2 ; Vận tốc người đi bộ là Vx . Người đi xe đạp chuyển động từ A về C , người đi xe đạp từ C về A .
Kể từ lúc xuất phát thời gian để hai người đi xe đạp và đi xe máy gặp nhau là :
\(t=\dfrac{S}{v_1+v_2}=\dfrac{S}{20+60}=\dfrac{S}{80}\left(h\right)\)
Chỗ ba người gặp nhau cách A :
\(S_0=20\times\dfrac{S}{80}=\dfrac{S}{4}\)
Nhận xét : \(S_0< \dfrac{S}{3}\Rightarrow\) Hướng đi của người đi bộ từ B đến A
Vận tốc của người đi bộ :
\(v_x=\dfrac{\dfrac{s}{3}-\dfrac{S}{4}}{\dfrac{S}{80}}\approx6,67\left(\dfrac{km}{h}\right)\)
Giải bằng lập phương trình : Gọi vị trí của người đi xe đạp, đi bộ và xe máy lần lượt là A, B, C, s là chiều dài khoảng đường AC.
Vậy AB = \(\dfrac{s}{3}\)
Kể từ thời điểm xuất phát, thời gian người đi xe đạp gặp người đi xe máy là :
\(t=\dfrac{s}{v_1+v_3}=\dfrac{s}{20+60}=\dfrac{s}{80}\left(h\right)\)
Chỗ gặp nhau cách A : \(s_0=t\cdot v_1=\dfrac{s}{80}\cdot20=\dfrac{s}{4}\left(km\right)< \dfrac{1}{3}\cdot s\)
Suy ra hướng chuyển động của người đi bộ là chiều từ B đến A.
Vận tốc người đi bộ : \(v_2=\dfrac{\dfrac{s}{3}-\dfrac{s}{4}}{\dfrac{s}{80}}\approx6,67\) (km/h)
Thời gian đi 1/3 quãng đường đầu:
t1= \(\dfrac{S}{3v_1}\)
Thời gian đi 1/3 quãng đường giữa:
t2= \(\dfrac{S}{3v_2}\)
Thời gian đi 1/3 quãng đường cuối:
t3= \(\dfrac{S}{3v_3}\)
Vận tốc trung bình trên cả đoạn đường AB là:
vtb= \(\dfrac{S}{t_1+t_2+t_3}\)= \(\dfrac{S}{\dfrac{S}{3v_1}+\dfrac{S}{3v_2}+\dfrac{S}{3v_3}}\)= \(\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{1}{3v_2}+\dfrac{1}{3v_3}}\)
Thay v1, v2 và v3 vào ta được:
vtb= 13,85(km/h)
- gọi quãng đường ab là x km.
- khi đó 1/3 quãng đường ầu đi hết thời gian là:\(\frac{X}{3}\):20(h)
- thời gian đi hết quãng đường giữa là:.........
- thời gian đi hết quãng đu2ờn cuối là:.........
- vận tốc trung bình của xe trên AB là:\(\frac{X}{\frac{X}{3}:20+\frac{X}{3}:15+\frac{X}{3}:10}\)
- tự ruuts gọn X nhé.p