cmr nếu p và 8p2+1 là 2 số ng tố thì 8p2-1 là số ng tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $p$ không chia hết cho $3$ thì $p\equiv \pm 1\pmod 3\Rightarrow p^2\equiv 1\pmod 3$
$\Rightarrow 8p^2+1\equiv 8+1\equiv 0\pmod 3$
Mà $8p^2+1>3$ nên $8p^2+1$ không là snt (trái giả thiết)
Vậy $p=3$. Khi đó $8p^2-1=71$ là số nguyên tố (đpcm)
Lời giải:
Bài 1)
Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)
Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)
Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.
P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.
Câu 2:
a) Câu này hoàn toàn dựa vào tính chất của số chính phương
Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:
\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)
Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên
\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$
Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)
b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$
Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$
Do đó $k\vdots 3$ $(2)$
Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
Để p và 2p+1 đều nguyên tố > 3 => p và 2p+1 đều ko chia hết cho 3
=> p chia 3 dư 1 hoặc 2 và 2p+1 chia hết cho 3 => p chia 3 dư 2 ; p có dạng 3k+2(k thuộc N)
Khi đó : 4p+1 = 4.(3k+2)+1 = 12k+8+1 = 12k+9 = 3.(4k+3) chia hết cho 3
Mà 4p+1 > 3 => 4p+1 là hợp số (ĐPCM)
Chứng minh nếu p và 8p^2+1 là hai số nguyên tố thì 8p^2-1 là số nguyên tố - Lê Bảo An
Nếu không hiện ra thì vô tkhđ.
ko cần đâu