K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

\(\left(\sqrt{2x}-y\right)^2=\left(\sqrt{2x}\right)^2-2\cdot\sqrt{2x}\cdot y+y^2=2x-2\sqrt{2x}\cdot y+y^2\)

\(\left(\sqrt{2x}+\sqrt{8y}\right)^2=\left(\sqrt{2x}\right)^2+2\left(\sqrt{2x}\right)\left(\sqrt{8y}\right)+\left(\sqrt{8y}\right)^2=2x+2\sqrt{16xy}+8y\)

Không chắc nha :)

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

29 tháng 7 2023

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)

31 tháng 5 2016

a/ \(\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}=35-2x\)

     \(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x\left(x+7\right)}=35-2x\)

     Đặt \(a=\sqrt{x}\)\(b=\sqrt{x+7}\)    \(\left(a,b\ge0\right)\), ta được:

    \(a+b+2ab+2a^2=35\) \(\Leftrightarrow a+2a^2+b+2ab=35\)

   \(\Leftrightarrow a\left(1+2a\right)+b\left(1+2a\right)=35\)\(\Leftrightarrow\left(1+2a\right)\left(a+b\right)=35\)

     Đến đây bạn chia trường hợp để giải nha

b/ \(P=\frac{1+2x}{1-\sqrt{1+2x}}-\frac{1-2x}{1-\sqrt{1-2x}}\)\(=\frac{\left(1+2x\right)\left(1+\sqrt{1+2x}\right)}{-2x}-\frac{\left(1-2x\right)\left(1+\sqrt{1-2x}\right)}{2x}\)

            Tới đây bạn tự làm được k

             

7 tháng 3 2018

Câu a ra đến (1+2a)(a+b)=35 rồi giải thế nào vậy bạn. Mình cảm ơn

13 tháng 8 2016

Đặt \(A=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)

Điều kiện xác định : \(\begin{cases}x\ge\frac{3}{2}\\y\ge2\\z\ge\frac{1}{3}\end{cases}\)

Ta có : \(A=\left(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}-2\right)+\left(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}-4\right)+\left(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}-8\right)+14\)

\(=\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}+14\)

\(=\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}+14\ge14\)

Dấu "=" xảy ra khi \(\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}\) (TMĐK)

Vậy Min A = 14 <=> (x;y;z) = (2;6;\(\frac{17}{3}\))

14 tháng 8 2016

mình vô cùng cảm ơn bạn

 

NV
17 tháng 9 2019

ĐKXĐ:...

\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)

TH1: \(\sqrt{2x-1}-1\ge0\Rightarrow x\ge1\) ta được:

\(\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\)

TH2: \(\sqrt{2x-1}-1< 0\Rightarrow\frac{1}{2}\le x< 1\) ta được:

\(\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

\(\Rightarrow2=2\) (luôn đúng)

Vậy nghiệm của pt là \(\frac{1}{2}\le x\le1\)

17 tháng 9 2019

Giải pt mà bạn ơi

6 tháng 3 2018

2x2-\(2\left(2\sqrt{2}-2\right)\)x+3=\(2\sqrt{2}\)

\(\Delta'=\left(2\sqrt{2}-2\right)^2-2\left(3-2\sqrt{2}\right)\)

      \(=12-8\sqrt{2}-34+24\sqrt{2}\)

        \(=-22+16\sqrt{2}>0\)

=> pt có 2 nghiệm gì đấy mình chưa học cái này

b c tương tự