K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Xét \(\Delta\)ABC có: E, I là trung điểm AB, BC

\(\Rightarrow\) EI là đường trung bình tam giác ABC

\(\Rightarrow\) EI//AC, EI=1/2AC

Chứng minh tương tự: MK//AC, MK=1/2AC

\(\Rightarrow\) EI//MK, EI=MK

\(\Rightarrow\) tứ giác EIKM là hình bình hành (1)

ta có: EA=EB, \(\widehat{A}\)=\(\widehat{B}\), BI=MA(do AD=BC)

\(\Rightarrow\) \(\Delta\)AEM=\(\Delta\)BEI

\(\Rightarrow\) EM=EI(2)

Từ (1), (2)

\(\Rightarrow\) tứ giác EIKM là hình thoi

Để hình thoi EIKM là hình vuông thì EM\(\perp\)EI
\(\Rightarrow\) AC⊥BD
\(\Rightarrow\) hình thang ABCD có 2 đường chéo vuông góc với nhau
Vậy hình thang ABCD có đường chéo vuông góc với nhau thì EIKM là hình vuông.

#Shinobu Cừu

Xét ΔBAC có BE/BA=BI/BC

nên EI//AC và EI=AC/2

Xét ΔDAC có DK/DC=DM/DA

nên KM//AC và KM=AC/2

=>EI//KM và EI=KM

Xét ΔABD có AE/AB=AM/AD

nên EM//BD và EM=BD/2=AC/2=EI

Xét tứ giác EIKM có

EI//KM

EI=KM

EM=EI

Do đó: EIKM là hình thoi

19 tháng 12 2017

A B C D M N P Q

Tam giác BCD có :

BN = NC ( gt )

DP = PC ( gt )

\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )

Tam giác ADB có :

AQ = QD ( gt )

AM = MB ( gt )

\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )

Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM

\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )

c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau 

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD

20 tháng 3 2017

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0