K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Rightarrow B^2=\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)^2\)

\(=\left(a+2\sqrt{a-1}\right)+2\sqrt{\left(a+2\sqrt{a-1}\right)\left(a-2\sqrt{a-1}\right)}+\left(a-2\sqrt{a-1}\right)\)

\(=2a+2\sqrt{a^2-4\left(a-1\right)}=2\left(a+\sqrt{a^2-4a+4}\right)=2\left[a+\sqrt{\left(a-2\right)^2}\right]\)

\(=2\left(a+\left|a-2\right|\right)\)

\(\Rightarrow B=\sqrt{2\left(a+\left|a-2\right|\right)}\)

9 tháng 8 2020

Đáp số:\(2\times\sqrt{a-1}\)

NV
14 tháng 9 2021

\(B=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)

\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)

\(=\left[{}\begin{matrix}2\sqrt{a-1}\text{ với }a\ge2\\2\text{ với }1\le a\le2\end{matrix}\right.\)

10 tháng 11 2021

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

26 tháng 8 2023

\(B=\left(\dfrac{1}{\sqrt[]{a}-1}-\dfrac{1}{\sqrt[]{a}}\right):\left(\dfrac{\sqrt[]{a}+1}{\sqrt[]{a}-2}-\dfrac{\sqrt[]{a}+2}{\sqrt[]{a}-1}\right)\left(1\right)\)

a) B xác định khi và chỉ khi :

\(\left\{{}\begin{matrix}a\ge0\\\sqrt[]{a}\ne0\\\sqrt[]{a}-1\ne0\\\sqrt[]{a}-2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) \(\left(1\right)\Leftrightarrow B=\left(\dfrac{\sqrt[]{a}-\left(\sqrt[]{a}-1\right)}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{\left(\sqrt[]{a}+1\right)\left(\sqrt[]{a}-1\right)-\left(\sqrt[]{a}+2\right)\left(\sqrt[]{a}-2\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{a-1-\left(a-4\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{3}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right).\left(\dfrac{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}{3}\right)\)

\(\Leftrightarrow B=\dfrac{\sqrt[]{a}-2}{3\sqrt[]{a}}\)

19 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)

\(B=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{a-1}\right)^2\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\cdot\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

18 tháng 11 2023

\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{4\sqrt{a}-1}{a}\right)\) ?

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

26 tháng 12 2021

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

27 tháng 12 2021

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

\(A=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{a-b}\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\left(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{2\sqrt{b}-\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\dfrac{-\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

=-1

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Bài 1:

\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{8-2\sqrt{8.9}+9}=\sqrt{(\sqrt{8}-\sqrt{9})^2}\)

\(=|\sqrt{8}-\sqrt{9}|=3-2\sqrt{2}\)

\(\Rightarrow a=3; b=-\sqrt{2}\)

\(\Rightarrow a^2+b^2=9+2=11\)

Bài 1: 

Ta có: \(\sqrt{17-12\sqrt{2}}=a+b\sqrt{2}\)

\(\Leftrightarrow a+b\sqrt{2}=3-2\sqrt{2}\)

Suy ra: a=3; b=-2

\(\Leftrightarrow a^2+b^2=3^2+\left(-2\right)^2=9+4=13\)

Câu 2: 

Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

Câu 1: 

Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=1\)