K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

a) Xét tam giác ABC cân tại A:

AK là đường cao \(\left(AK\perp BC\right).\)

\(\Rightarrow\) AK là đường trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) BK = CK.

b) Tam giác ABC cân tại A (gt).

\(\Rightarrow\widehat{B}=\widehat{C}\) (Tính chất tam giác cân).

Xét tam giác KEB vuông tại E và tam giác KFC vuông tại F:

\(\widehat{B}=\widehat{C}\left(cmt\right).\)

BK = CK (cmt).

\(\Rightarrow\) Tam giác KEB = Tam giác KFC (cạnh huyền - góc nhọn).

c) Xét tam giác ABC cân tại A:

AK là đường cao \(\left(AK\perp BC\right).\)

\(\Rightarrow\) AK là phân giác của góc BAC (Tính chất tam giác cân).

17 tháng 2 2022

Tập hợp các điểm K thỏa mãn là đường tròn đường kính AC, BK=CK chỉ tại điểm E là trung điểm của BC như trên hình.

Vui lòng duc nguyen xem lại đề bài giúp mình.

17 tháng 3 2022

a) ta có AH⊥BC  

ˆ
A
H
B
=
ˆ
A
H
C
=90 độ

ta có AB=AC 

Δ
ABC cân tại A


ˆ
A
B
C

ˆ
A
C
B
  hay
ˆ
A
B
H
=
ˆ
A
C
H

Xét 
Δ
AHB
(
ˆ
A
H
B
=
90
đ

)
 và 
Δ
AHC 
(
ˆ
A
H
C
=
90
)
đ

 có 

AB=AC(giả thiết)

ˆ
A
B
H
=
ˆ
A
C
H
 (chứng minh trên)


 
Δ
AHB= 
Δ
AHC(cạnh huyền - góc nhọn)


HB=HC(2 góc tương ứng)

vậy HB=HC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: ΔACB vuông tại A 

mà AH là đường cao

nên AH^2=HB*HC

d: ΔAHB vuông tại H có HI vuông góc AB

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2=AI*AB

d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có 

HB=HC(ΔABH=ΔACH)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)

Suy ra: HE=HF(Hai cạnh tương ứng)

24 tháng 3 2021

a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A

\(\widehat{C}\)=30

MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180

\(\widehat{A}\) + 30+30=180

\(\widehat{A}\)=180-30-30

\(\widehat{A}\)=120

xÉT ΔAHB vuông tại H, ΔAHC vuông tại H

CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)

\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)

⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)

\(\widehat{BAH}=\widehat{CAH}\)

C.TRONG TAM GIÁC AHC VUÔNG TẠI H 

\(AC^2=HC^2+AH^2\)

\(AC^2\)=\(4^2\)+\(3^2\)

\(AC^2\)=16+9 

AC=\(\sqrt{25}\)=5CM

D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F 

CÓ: AH : CẠNH HUYỀN CHUNG

\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)

⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)

⇒HE=HF (2 CẠNH TƯƠNG ỨNG)

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)