các bạn giúp mình. (2n-3)n-2n(n+2)luôn chia hết cho 7 với mọi n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n - 3) - 2n(n + 1) = 2n2 - 3n - 2n2 - 2n = -5n
Do: -5 chia hết cho 5 => -5n chia hết cho 5 với mọi n nguyên
Vậy n(2n - 3) - 2n(n + 1) chia hết cho 5 với mọi n nguyên
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n
=-7n chia hết cho 7
Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
n(2n-3) - 2n(n+1)
= 2n2 - 3n - 2n2 - 2n
= (2n2 - 2n2) - (3n + 2n)
= 0 - (-5)n
= (-5)n
Vì tích có chứa thừa số -5\(⋮\)5 nên chia hết cho 5
Vậy n(2n-3) - 2n(n+1)\(⋮\)5 với \(\forall\)n\(\in\)Z
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
n(2n-3)-2n(n+2)
=2n2-3n-2n2-4n
= - 7n luôn chia hết cho 7 (vì -7 chia hết cho 7)
vậy n(2n-3)-2n(n+2) luôn chia hết cho 7 với mọi n
( 2n - 3 )n - 2n(n + 2 )
= 2n2 - 3n - 2n2 - 4n
= -7n \(⋮\)7 với mọi n ( đpcm )