K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

323 =17.19.

Ta có:  \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮17,16^n-1⋮17\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)(1)

Tương tự:

\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1⋮19,16^n-3^n⋮19\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\)(2)

Từ (1) và (2) \(\Rightarrow20^n+16^n-3^n-1⋮\left(17,19\right)=323\)(đpcm)

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

DD
25 tháng 8 2021

\(n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-\left(3n^2-6n\right)=3n^2-n-3n^2+6n=5n\)

luôn chia hết cho \(5\)với mọi số nguyên \(n\).

2 tháng 9 2016

Ta có 323=17.19

+Chứng minh A⋮17 

Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n) 

Nhận xét⎨(16n−1)⋮17                           (20n−3n)⋮17  

 ⇒A⋮17  (1)

+Chứng minh A⋮19A⋮19

Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)

Nhận xét ⎨(16n+3n)⋮19                     (20n−1)⋮19 

⇒A⋮19 (2)

Mà (17;19)=1(17;19)=1

Từ (1) và (2)⇒A⋮BCNN(17.19)

hay  A⋮323 (đpcm)

17 tháng 8 2021

\(323=17.19\)

+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)

\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\) 

+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮\left(20-3\right)=17\)

\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)

Mà \(\left(17,19\right)=1\)

\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)

17 tháng 8 2021

thank you yeu

11 tháng 2 2016

n^3 + 20n = n^3 - 4n + 24n 
n^3 + 20n = n.(n² - 4) + 24n 
n^3 + 20n = n.(n - 2).(n+2) + 24n 
n = 2k 
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k 
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6 
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.

 

11 tháng 2 2016

minh moi hok lop 6