Tìm nghiệm
Q(x) =x^2+4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
\(4x\left(3-\dfrac{1}{4}x\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow12x-x^2+x^2-4=0\Rightarrow12x=4\Rightarrow x=\dfrac{1}{3}\)
\(12x-x^2+x^2-2^2=0\)
\(12x-2=0\)
\(12x=2\)
\(x=\dfrac{1}{6}\)
Vậy x=1/6
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
`D(x)=3x^3+x=0`
`\Leftrightarrow 3x^2*x+x=0`
`\Leftrightarrow x(3x^2+1)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2=-1\text{(loại)}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x=0`
`E(x)=x^2-3x+2=0`
`\Leftrightarrow x^2-2x-x+2=0`
`\Leftrightarrow (x^2-2x)-(x-2)=0`
`\Leftrightarrow x(x-2)-(x-2)=0`
`\Leftrightarrow (x-2)(x-1)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x= {2 ; 1}`
`F(x)=4x^2-4x+1=0`
`\Leftrightarrow (2x+1)^2=0`
`\Leftrightarrow 2x-1=0`
`\Leftrightarrow 2x=1`
`\Leftrightarrow x=1/2`
Vậy, nghiệm của đa thức là `x=1/2`
`D(x)=3x^3+x`
`-> 3x^3 +x=0`
`=> x(3x^2 +1)=0`
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\left\{0\right\}\)
__
`E(x)=x^2-3x+2`
`-> x^2-3x+2=0`
`=> x^2 -2x-x+2=0`
`=> (x^2-2x) -(x-2)=0`
`=> x(x-2)-(x-2)=0`
`=>(x-2)(x-1)=0`
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{2;1\right\}\)
__
`F(x)=4x^2-4x+1`
`-> 4x^2-4x+1=0`
`=> 4x^2 -2x-2x+1=0`
`=> (4x^2-2x)-(2x-1)=0`
`=> 2x(2x-1)-(2x-1)=0`
`=> (2x-1)(2x-1)=0`
`=>(2x-1)^2=0`
`=>2x-1=0`
`=>2x=1`
`=>x=1/2`
Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)
Hoặc
`->4x^2-4x+1=0`
`=> (2x-1)^2=0`
`=> 2x-1=0`
`=>2x=1`
`=>x=1/2`
Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)
\(a,\Leftrightarrow4x^2-20x-4x^2+7x-3=23\\ \Leftrightarrow-13x=-26\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\\ \Leftrightarrow-43x=-13\\ \Leftrightarrow x=\dfrac{13}{43}\)
a) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=23\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=23\)
\(\Leftrightarrow13x=-26\Leftrightarrow x=-2\)
b) \(\left(x+2\right)^2+\left(2x-3\right)^2=5x\left(x+7\right)\)
\(\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\)
\(\Leftrightarrow43x=13\Leftrightarrow x=\dfrac{13}{43}\)
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Để Q(x) có nghiệm
x2 + 4x = 0
=> x(x + 4) = 0
=> \(\orbr{\begin{cases}x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy đa thức Q(x) có 2 ngiệm là x= 0 ; x = -4
Để đa thức Q(x) có nghiệm , ta có :
\(Q\left(x\right)=x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy \(x\in\left\{0;-4\right\}\)là nghiệm của đa thức Q(x) .
Học tốt