Cho tam giác ABC vuông ở A,có AB=3cm,AC=4cm và đường cao AH
a)Tính BC
b)Tính độ dài các hình chiếu của các góc vuông trên cạnh huyền
c)Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: BC=BH+HC
nên BC=4+9
hay BC=13cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)
\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)
\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)
\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)
\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)
\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)
\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)
a) Tính độ dài đoạn thẳng DE:
DAE^ = ADH^ = AEH^ = 1v => ADHE là hình chữ nhật
=> DE = AH
mà AH^2 = HB.HC = 9.4 => AH = 3.2 = 6
vậy DE = 6
b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N ,CM:M là trung điểm của BH,N là trung điểm của CH.
CEN^ = DEH^ ( góc có cạnh tương ứng vuông góc)
ECN^ = DAH^ ( ------------nt--------------)
DAH^ = DEH^ ( cùng chắn cung DH của đường tròn ngoại tiếp tứgiác ADHE)
=> CEN^ = ECN^ => NE = NC (1)
HEN^ = AED^ ( góc có cạnh tương ứng vuông góc)
EHN^ = AHD^ ( -----nt-----)
AED^ = AHD^ ( cùng chắn cung AD của đường tròn ngoại tiếp tứ giác ADHE)
=> HEN^ = EHN^ => NE = NH (2)
(1) và (2) => NC = NH hay M là trung điểm của CH.
chứng minh tương tự M là trung điểm của BH.
c) Tính diện tích tứ giác DENM
DENM là hình thang vuông, có:
DM = BH/2 = 4/2 = 2
EN = CH/2 = 9/2
S(DENM) = (DM + EN).DE/2 = (2 + 9/2).6/2 = 39/2 đvdt