CMR : Nếu p và \(P^2+8\)là số nguyên tố thì \(P^3+8p+2\)cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
Câu 2 :
8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
tick đúng cho mik nha ! **** !!!
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
Nếu p>3 mà p là SNT nên p ko chia hết cho 3
Suy ra p^2 chia 3 dư 1
Suy ra p^2+8 chia hết cho 3,mà p^2+8>3 nên p^2+8 là HS(L)
Vậy p nhỏ hơn hoặc bằng 3
Nếu p=2 thì p^2+8 là HS (L)
Khí đó p=3
Suy ra p^3+8p+2=53 là SNT(đpcm)