K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

16 tháng 2 2021

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

NV
21 tháng 4 2023

\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\) 

\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)

Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu

NV
21 tháng 4 2023

Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m=4m^2-4m+4\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)

\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)

=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m

b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0

=>a*c<=0

=>1*(-m)<=0

=>-m<=0

=>m>=0

c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)

=>\(x_1+x_2=0\)

=>2(m-1)=0

=>m-1=0

=>m=1

d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)

\(=\sqrt{4m^2-8m+4+4m}\)

\(=\sqrt{4m^2-4m+4}\)

\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)

Dấu '=' xảy ra khi 2m-1=0

=>\(m=\dfrac{1}{2}\)

Δ=(2m-2)^2-4(m-3)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)

=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)

=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)

mà m nguyên

nên \(m\in\varnothing\)

NV
24 tháng 3 2021

Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)

Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)

Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn

\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)

Đề sai rồi bạn

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)