K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{10}\)

\(\frac{1}{2}.2^x.2^4-2^x=8192-1024\)

\(2^x.8-2^x=7168\)

\(2^x\left(8-1\right)=7168\)

\(2^x.7=7168\)

\(2^x=7168\div7\)

\(2^x=1024\)

\(2^x=2^{10}\)

\(\Rightarrow x=10\)

Vậy \(x=10\).

(1/3+1/6).2^x.2^4-2^x=8192-1024

(1/3+1/6).2^x.2^4-2^x=7168

1/2.2^x.2^4-2^x=7168

1/2.2^x.(2^4-1)=7168

1/2.2^x.(8-1)=7168

1/2.2^x.7=7168

1/2.2^x=7168:7

1/2.2^x=1024

      2^x=1024:1/2

     2^x=2048

2^x=2^11

x=11

vậy x=11

13 tháng 4 2019

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)

\(\Leftrightarrow x=\frac{6}{11}\)

13 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x+1=100\)

\(\Leftrightarrow x=100-1\)

\(\Leftrightarrow x=99\)

8 tháng 4 2017

1 ) x = 0,375

2) x= 7,530514717

8 tháng 4 2017

nhoc oi tra loi han hoi ra

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

NV
12 tháng 5 2019

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow E=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)

\(=1+\frac{1}{2}\left(3+4+5+...+201\right)\)

\(=1+\frac{1}{2}\left(1+2+3+...+201-1-2\right)\)

\(=1+\frac{1}{2}\left(\frac{201.202}{2}-3\right)=10150\)

\(\frac{21}{5}\left|x\right|< 2019\Rightarrow\left|x\right|< 2019\div\frac{21}{5}=\frac{3365}{7}\)

\(\Rightarrow-480\le x\le480\)

\(\Rightarrow\sum x=-480+480-479+479+...+-1+1+0=0\)

\(\frac{2^{24}\left(x-3\right)}{\frac{81}{35}.\left(6.2^{24}-2^{26}\right)}=\frac{25}{9}\)

\(\Leftrightarrow\frac{2^{24}\left(x-3\right)}{2^{24}\left(6-2^2\right)}=\frac{25}{9}.\frac{81}{35}\)

\(\Leftrightarrow\frac{x-3}{2}=\frac{45}{7}\)

\(\Leftrightarrow x-3=\frac{90}{7}\)

\(\Rightarrow x=\frac{111}{7}\)

12 tháng 5 2019

???