giúp mình với!
tìm x,y thuộc Z biết
x.y + 2x +y=9
xin cảm ơn ( câu x.y + 2x +y=0 là do mình đánh nhầm nhé xin lỗi nhg bn nào đã làm nha!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(xy-2x+y=0\)
\(\Leftrightarrow\left(xy-2x\right)+\left(y-2\right)=-2\)
\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-2\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-2\)
Mà \(-2=\left(-1\right).2=1.\left(-2\right)\) nên ta xét các TH sau:
+ Nếu: \(\hept{\begin{cases}x+1=-1\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=4\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=2\\y-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=1\\y-2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=-2\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=3\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;4\right);\left(1;1\right);\left(0;0\right);\left(-3;3\right)\right\}\)
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
bạn chỉ cấn thay x=0,y=-1 váo biểu thức rồi tính như bình thường là dc
Ta có : xy + 2x + 2y = 9
=> x(y + 2) + 2y + 4 = 9 + 4
=> x(y + 2) + 2(y + 2) = 13
=> (x + 2)(y + 2) = 13
Tới đây lập bảng xét các trường hợp : (Nếu x ; y \(\inℕ\)=> 13 = 1.13 = 13.1 ) => XÉT 2 TRƯỜNG HỢP
Nếu x ; y \(\inℤ\)=> 13 = 1.13 = (-1).(-13 = 13.1 = (-13).(-1) => Xét 4 trường hợp
câu 1;
bạn nhóm 2 cái đầu với 2 cái cuối đặt nhân tử chung nha
câu 2:
bạn chuyển xy sang vế trái rồi nhóm với x hoặc y nha, cái còn lại thì bạn nhóm với 1 và cũng đặt nhân tử chung sau đó thì bạn tính ra nha
BẠN MÀ K LÀM ĐC THÌ CHỊU ĐÓ :)))
mai thùy trang ví dụ mà đưa xy sang vế trái thì sẽ đc là x +y+1 -xy=0 thì là đc x(y-1)+(y+1) hoặc là y(x-1)+(x+1) chứ lm j mà nhóm nhân tử chung đk bn
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
=> x = (-2).21 = -42
y = (-2).14 = -28
z = (-2).10 = -20
Vậy ...
\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay \(\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\) \(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay \(\frac{y}{14}=\frac{z}{10}\)
suy ra: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) hay \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=-2\)
suy ra: \(\frac{3x}{63}=-2\)\(\Rightarrow\)\(x=-42\)
\(\frac{7y}{98}=-2\)\(\Rightarrow\)\(y=-28\)
\(\frac{5z}{50}=-2\) \(\Rightarrow\)\(z=-10\)
Bài làm:
Ta có: \(xy+2x+y=9\)
\(\Leftrightarrow\left(xy+2x\right)+\left(y+2\right)=11\)
\(\Leftrightarrow x\left(y+2\right)+\left(y+2\right)=11\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=11\)
Mà \(11=1.11=\left(-1\right).\left(-11\right)\) nên ta xét:
+ Nếu: \(\hept{\begin{cases}x+1=1\\y+2=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=9\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=11\\y+2=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-1\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=-1\\y+2=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-13\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x+1=-11\\y+2=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-3\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;9\right);\left(10;-1\right);\left(-2;-13\right);\left(-12;-3\right)\right\}\)
Mệt-.-
:v Thôi thì làm cho bạn nè :)
Ta có: xy + 2x + y = 9
=> xy + 2x + y + 2 = 11
=> x(y + 2) + (y + 2) = 11
=> (y + 2) (x + 1) = 11
=> y - 2, x + 1 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
Ta có bảng sau: ...
Bạn tự lập bảng nhé, tương tự như bài trước thôi ạ.