/x-5/+/x-11/=3x.Tìm x
/ là dấu giá trị tuyệt đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(11.x+5=60\)
\(\Leftrightarrow\)\(11.x=60-5\)
\(\Leftrightarrow11.x=55\)
\(\Leftrightarrow x=55:11\)
\(\Rightarrow x=5\)
Vậy x=5
\(11.x+5=60\)
\(11x=55\)
\(x=5\)
\(2|x+5|=32-13\)
\(2|x+5|=19\)
\(|x+5|=\frac{19}{2}\)
\(\Rightarrow\orbr{\begin{cases}x+5=\frac{19}{2}\\x+5=-\frac{19}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x=-\frac{29}{2}\end{cases}}}\)
Chú ý BĐT sau: /A/+/B/\(\ge\)/A+B/ <=> AB\(\ge\)0
Áp dụng: Min=12
Đặt A = -(x+1)^2-/y-2/+11
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|y-2\right|\le0\end{cases}}}\)
\(\Rightarrow-\left(x+1\right)^2-\left|y-2\right|\le0\)
\(\Rightarrow A=-\left(x+1\right)^2-\left|y-2\right|+11\le11\)
Dấu "=" xảy ra khi x = -1, y = 2
Vậy GTLN của A = 11 khi x = -1, y = 2
\(\left|x-5\right|+\left|x-11\right|=3x\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow3x\ge0\Rightarrow x\ge0\)
\(\Leftrightarrow x-5+x-11=3x\)
\(\Leftrightarrow2x-16=3x\)
\(\Leftrightarrow-16=3x-2x\)
\(\Leftrightarrow x=-16\)
Vậy x = -16
Có : |x-2| và |y+5| đều >= 0
=> A >= 0+0+2 = 2
Dấu "=" xảy ra <=> x-2=0 và y+5=0 <=> x=2 và y=-5
Vậy GTNN của A = 2 <=> x=2 và y=-5
Tk mk nha
Vì \(\left|x-5\right|\ge0\forall x\) ; \(\left|x-11\right|\ge0\forall x\)
\(\Rightarrow\left|x-5\right|+\left|x-11\right|\ge0\forall x\)
\(\Rightarrow3x\ge0\Rightarrow x\ge0\)
TH1 : x = 0
\(\Leftrightarrow\left|0-5\right|+\left|0-11\right|=0\Leftrightarrow5+11=0\left(vl\right)\) ( loại )
TH2 : 0 < x < 5
\(\Leftrightarrow-\left(x-5\right)+\left[-\left(x-11\right)\right]=3x\Leftrightarrow-x+5-x+11=3x\)
\(\Leftrightarrow-2x+16=3x\Leftrightarrow5x=16\Leftrightarrow x=\frac{16}{5}\left(tm\right)\)
TH3 : x > 11
\(\Leftrightarrow x-5+x-11=3x\Leftrightarrow2x-16=3x\Leftrightarrow-x=16\Leftrightarrow x=-16\left(ktm\right)\)
Vậy bt trên đúng \(\Leftrightarrow x=\frac{16}{5}\)