Trong lớp 10C có 45 học sinh trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích
môn Sử, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn
trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lượng học sinh thích 1 trong 3 môn hoặc 2 trong 3 môn là:
45 - (6+5)= 34 (học sinh)
Số lượng học sinh thích 1 trong 3 môn là:
(25-5) + (20-5) + (18-5) - 34 = 14 (học sinh)
Đáp số: 14 học sinh
Gọi A,B,C là tập hợp các học sinh tích môn toán , Văn , Anh
ta có :
\(\hept{\begin{cases}\left|A\right|=10,\left|B\right|=20,\left|C\right|=25\\\left|A\cap B\cap C\right|=3\\\left|A\cup B\cup C\right|=40\end{cases}}\) ta có : \(\left|A\cup B\cup C\right|=\left|A\right|+\left|B\right|+\left|C\right|-\left(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|\right)+\left|A\cap B\cap C\right|\)
nên \(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|=18\)
Do đó số học sinh chỉ thích đúng hai môn là :
\(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|-3\left|A\cap B\cap C\right|=18-3\times3=9\)
Số em không thích Toán là 35-25=10(bạn)
Số em không thích Văn là 35-20=15 bạn
Số em không thích Văn nhưng thích Toán là 15-8=7 bạn
SỐ em không thích Toán nhưng thích Văn là 10-8=2 bạn
SỐ em thích cả Toán và Văn là:
35-8-7-2=35-17=18 bạn
số học sinh không thích cả 2 môn là:
36-(10+6+4)=10(hs)
đs:10 học sinh
- Tổng số học sinh thích môn văn, môn toán và thích cả hai môn có là:
10 + 6 + 4 = 20 ( học sinh )
- Số học sinh không thích cả hai môn có là:
36 - 20 = 16 ( học sinh )
Đáp số: 16 học sinh.
Gọi V, T, A lần lượt là tập hợp các học sinh giỏi Văn, Toán, Tiếng Anh. Theo đề bài, ta có: \(\left|V\right|=18;\left|T\right|=20;\left|A\right|=22\)\(;\left|V\cap T\cap A\right|=5\)\(;\left|A\cup T\cup V\right|=34\)
Áp dụng công thức bù trừ, ta có:
\(\left|V\cup T\cup A\right|=\left|V\right|+\left|T\right|+\left|A\right|-\left|V\cap T\right|-\left|T\cap A\right|-\left|A\cap V\right|+\left|V\cap T\cap A\right|\)
\(\Rightarrow34=18+20+22-P+5\) (với \(P=\left|V\cap T\right|+\left|T\cap A\right|+\left|A\cap V\right|\))
\(\Rightarrow P=31\)
Số học sinh thích đúng 1 môn trong 3 môn Toán, Văn, Tiếng Anh chính bằng:
\(\left|V\cup T\cup A\right|-P+2\left|V\cap T\cap A\right|\) \(=34-31+2.5=13\) (học sinh)
Sơ đồ học sinh lớp 10A:
Số học sinh thích môn toán và tiếng anh và văn là:(25+15+20)-(5+7+1+6)=42(bạn)
Số học sinh không thích môn nào là:45-42=3(học sinh)
eh8 ihgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
Bài giải:
Gọi a,b,c theo thứ tự là số học sinh chỉ thích môn Văn, Sử, Toán;
x là số học sinh chỉ thích hai môn là văn và toán
y là số học sinh chỉ thích hai môn là Sử và toán
z là số học sinh chỉ thích hai môn là văn và Sử
Ta có số em thích ít nhất một môn là: 45−6=39
Dựa vào biểu đồ ven ta có hệ phương trình:
a + x + z + 5 = 25 ( 1 )
b + y + z + 5 = 18 ( 2 )
c + y + z + 5 = 20 ( 3 )
x + y + z + a + b + c + 5 = 39 ( 4 )
Cộng vế với vế (1),(2),(3) ta có:
a + b + c+2(x+ y + z)=65(5)
Từ (4) và (5) ta có :
a + b + c + 2 (39 - 5 - a - b - c) + 15= 63
⇒ a + b + c = 20
Vậy chỉ có 20 em thích chỉ một môn trong ba môn trên.
Mik gửi cho bn hình vẽ nhé!
Ở đây mik ko gửi đc,bn thông cảm!