K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Em sửa lại tên đi nhé!

\(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2\)

\(\left(x^2-1\right)^2-2.\left(x^2-1\right).\frac{x}{2}+\frac{x^2}{4}-\frac{x^2}{4}-2x^2\)

\(\left(x^2-1-\frac{x}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(x^2-1-\frac{x}{2}-\frac{3}{2}x\right)\left(x^2-1-\frac{x}{2}+\frac{3}{2}x\right)\)

\(\left(x^2-2x-1\right)\left(x^2-x-1\right)\)

Phân tích tiếp được đấy:

\(x^2-2x-1=\left(x-1\right)^2-2=\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)\)

\(x^2-x-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\)

Thay vào nhé!

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

a: \(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

9 tháng 12 2021

a)x2-2x-4y2-4y

=x2-2x-4y2-4y+1-1

=(x2-2x+1)-(4y2+4y+1)

=(x-1)2-(2y+1)2

=(x-2y-2)(x+2y)

b)2x2+3x-5

=2x2-2x+5x-5

=2x(x-1)+5(x-1)

=(x-1)(2x+5)

 

 

a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

c: \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

 

26 tháng 8 2021

a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)

 

13 tháng 11 2021

a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)

c) đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)

a: \(=x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-1\right)\)

b: \(=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

\(a,x\left(x+6\right)\\ b,\left(9x-1\right)\left(9x+1\right)\\ c,\left(x+y\right)-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ d,\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\)

28 tháng 12 2021

mn giúp e ik mn

 

28 tháng 12 2021

\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)

\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)

\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)

18 tháng 1 2022

\(a,x^2+6x=x\left(x+6\right)\\ b,9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\\ c,x^2+2xy-9+y^2=\left(x^2+2xy+y^2\right)-9=\left(x+y\right)^2-3^2=\left(x+y-3\right)\left(x+y+3\right)\\ c,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)