PHÂN TÍCH NHẤN TỬ
a) x(x+4) (x+6) ( x+16) + 128
b) x^3 - 4x^2 - 12x + 24
c) x^2 - 4 + (x-2)^2
Theo các cách Đặt nhân tử chung, nghiệm, đặt ẩn phụ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
._. :)
Cái đầu đặt t = x^2 + x+4 (xong đi ngủ :( )
Cái thứ 2 thì dùng máy tính tách cũng đc
Tách 8 thành -6 và-2
Câu c tách ra sao thì mk chịu
Câu d đặt t = x^2+x
<=> t^2 +3t+2
<=> Tách 3t thành t+2t và nhóm
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
đặt \(t=x^2+7x+10\Rightarrow x^2+7x+12=t+2\)
\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)=\)
\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
2: \(8xy-24xy+16x\)
\(=8x\cdot y-8x\cdot3y+8x\cdot2\)
\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)
\(=-16y\left(y-1\right)\)
3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)
11: \(2mx-4m2xy+6mx\)
\(=2mx-2my\cdot4y+2mx\cdot3\)
\(=2mx\left(1-4y+3\right)\)
\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)
12: \(7x^2y^5-14x^3y^4-21y^3\)
\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)
\(=7y^3\left(x^2y^2-2x^3y-3\right)\)
13: \(2\left(x-y\right)-a\left(x-y\right)\)
\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(2-a\right)\)
a)A=(x2+2x)+9x2+18x+20
=(x2+2x)+9(x2+2x)+20
Đặt t=x2+2x đc:
t+9t+20=10t+20=10(t+2)
Thay t=x2+2x vào đc:
10(x2+2x+2)
1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)
2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)
3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)
\(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)
5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)
6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
a: =(x^2+x-6)(x^2+x-8)
=(x+3)(x-2)(x^2+x-8)
b: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
c: =x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12
=(x-1)(x^3+3x^2+8x+12)
=(x-1)(x^3+2x^2+x^2+2x+6x+12)
=(x-1)(x+2)(x^2+x+6)
a, \(x\left(x+4\right)\left(x+6\right)\left(x+16\right)+128\)
\(=\left(x^2+4\text{x}\right)\left(x+6\right)\left(x+16\right)+128\)
\(=\left(x^3+10x^2+24x\right)\left(x+16\right)+128\)
\(=x^4+26x^3+184x^2+384x+128\)
b, \(x^3-4\text{x}^2-12\text{x}+24\)(Đề sai chăng??)
c, \(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\text{[}\left(x+2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=\left(x-2\right)2\text{x}\)