K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(P\left(x\right)=4x^2+x^3-2x+3x-x^3+3x-2x^2\)

\(=2x^2+4x\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là 0

Ta có: \(Q\left(x\right)=3x^2-3x+2-x^3+2x-x^2\)

\(=-x^3+2x^2-x+2\)

Bậc là 3

Hệ số cao nhất là -1

Hệ số tự do là 2

2) Ta có: R(x)-P(x)-Q(x)=0

\(\Leftrightarrow R\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=2x^2+4x-x^3+2x^2-x+2\)

\(=-x^3+4x^2+3x+2\)

3) Thay x=2 vào đa thức \(Q\left(x\right)=-x^3+2x^2-x+2\), ta được:

\(Q\left(2\right)=-2^3+2\cdot2^2-2+2\)

\(=-8+8-2+2=0\)

Vậy: x=2 là nghiệm của đa thức Q(x)

Thay x=2 vào đa thức \(P\left(x\right)=2x^2+4x\), ta được:

\(P\left(2\right)=2\cdot2^2+4\cdot2=2\cdot4+4\cdot2=16>0\)

Vậy: x=2 không là nghiệm của đa thức P(x)

25 tháng 7 2018

a. Ta có:

f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5

Bậc của đa thức f(x) là 3 (0.5 điểm)

g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4

Bậc của đa thức g(x) là 3 (0.5 điểm)

Bài 1. Cho hai đa thức:P(x) = -x(3x - 4) - x3 + x2 + 3x4 - 1 và Q(x) = 3x4 - 2x + x2 (x - 1) - 1 - 2x3a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.b) Tìm bậc, hệ số tự do và hệ số cao nhất của P(x).c) Tính N(x) = P(x) + Q(x) và M(x) = P(x) - Q(x).d) Tìm nghiệm của đa thức M(x).Bài 2. Cho hai đa thứcP(x)...
Đọc tiếp

Bài 1. Cho hai đa thức:

P(x) = -x(3x - 4) - x3 + x2 + 3x4 - 1  Q(x) = 3x4 - 2x + x2 (x - 1) - 1 - 2x3

a) Thu gọn  sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.

b) Tìm bậc, hệ số tự do  hệ số cao nhất của P(x).

c) Tính N(x) = P(x) + Q(x)  M(x) = P(x) - Q(x).

d) Tìm nghiệm của đa thức M(x).

Bài 2. Cho hai đa thức

P(x) = 2x2 - 3x3 + x2 + 3x3 - x - 1 - 3x  Q(x) = -3x2 + 2x3 - x - 2x3 - 3x - 2

a) Thu gọn  sắp xếp hai đa thức P(x) , Q(x) theo lũy thừa giảm dần của biến.

b) Tính F(x) = Q(x) - P(x)  G(x) = P(x) - Q(x).

c) Tính F(-2) , Q(3) .

d)  nh  G(x).(6x2 - 1) .

Bài 3. Cho hai đa thức

A(x) = 10x2 - 3x3 + 6x - 6x2 + 8x2 - 2x3  B(x) = 3x(x + 1) - 2(4 - x2 )

a) Thu gọn  sắp xếp hai đa thức A(x) , B(x) theo lũy thừa giảm dần của biến.

b) Tìm bậc, hệ số tự do  hệ số cao nhất của A(x).

c) Tính A(1) +B(-1).

d) Tính C(x) = A(x) : 2x .

e) Tìm nghiệm của đa thức B(x) .

giúp mikk gấp với ạ,mik cảm ơn

2
AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Bạn nên tách lẻ từng bài ra để được hỗ trợ tốt hơn, không nên đăng 1 loạt bài như thế này nhé.

2:

a: P(x)=3x^2-4x-1

Q(x)=-3x^2-4x-2

b:F(x)=-3x^2-4x-2-3x^2+4x+1=-6x^2-1

Q(x)=3x^2-4x-1+3x^2+4x+2=6x^2+1

c: F(-2)=-6*4-1=-25

Q(3)=-27-12-2=-41

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm
22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x3+3x2−x+6

D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+3⋅4−2+6=20−2+6=24

d. 

`a,`

`P(x)=2x^3-2x+x^2-x^3+3x+2`

`= (2x^3-x^3)+x^2+(-2x+3x)+2`

`= x^3+x^2+x+2`

`b,`

`H(x)+Q(x)=P(x)`

`-> H(x)=P(x)-Q(x)`

`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`

`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`

`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`

`= 2x^2+2x+1`

Vậy, `H(x)=2x^2+2x+1.`

NV
7 tháng 5 2023

a.

\(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=x^3-x^2-x+1\)

b.

\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)

\(\Rightarrow H\left(x\right)=2x^2+2x+1\)

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

a: f(x)=x^3-2x^2+2x-5

g(x)=-x^3+3x^2-2x+4

b: Sửa đề: h(x)=f(x)+g(x)

h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1

c: h(x)=0

=>x^2-1=0

=>x=1 hoặc x=-1