K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S = 22+42+62+...+202.

   = ( 2 .1 )2 + ( 2 . 2 )2 + ( 2.3 )2+...+ ( 2.10 )2

    = 22 . 12 + 2. 22 + 2. 32 + ... + 22 . 102

   = 22 . ( 12 + 22 +32 + ... +102 )

   = 4 . 385

   = 1540

( Thiếu đề bài nhé )

2 tháng 8 2020

S = 22 + 42 + 62 + ... + 202

= 22.(12 + 22 + 32 + ... + 102)

Đặt C = 12 + 22 + 32 + ... + 102

= 1.1 + 2.2 + 3.3 + ... + 10.10

= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 10.(11 - 1)

= (1.2 + 2.3 + 3.4 + ... + 10.11) - (1 + 2 + 3 + ... + 10)

= 1.2 + 2.3 + 3.4 + .. + 10.11 - 55

Đặt D =  1.2 + 2.3 + 3.4 + .. + 10.11

=> 3D = 1.2.3 + 2.3.3 + 3.4.3 + ... + 10.11.3

=> 3D = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 10.11.(12 - 9)

=> 3D = 1.23 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 10.11.12 - 9.10.11

=> 3D = 10.11.12 

=> 3D = 1320

=> D = 440

Thay D vào C ta có 

C = 440 - 55 = 385

Thay C vào S 

=> S = 385 x 4 =  1540

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

18 tháng 7 2021

\(2^2+4^2+6^2+....+20^2\)

\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2\)

\(=2^2\left(1^2+2^2+3^2+...10^2\right)\)

\(=2^2.385=1540\)

 

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)

\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)

\(=4A=4.385=1540\)

Chọn B

14 tháng 1 2021

\(F=2^2+4^2+...+20^2\)

\(=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(2.10\right)^2\)

\(=1.2^2+2^2.2^2+...2^2.10^2\)

\(=2^2\left(1+2^2+...+10^2\right)\)

\(=2^2.385\)

\(=4.385\)

\(=1540\)

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

5 tháng 8 2023

2² + 4² + 6² + ... + 16² + 18²

= 4.(1 + 2² + 3² + ... + 8² + 9²)

= 4.285

= 1140

5 tháng 8 2023

= 285 nha mình ghi nhầm thành 385

 

4 tháng 10 2016

12 + 22 + 32 + 42 + 52 + 62 = 222

bạn k mình, mình k lại

4 tháng 10 2016

12 + 22 + 32 + 42 + 52 + 62 = 222

k mk , mk k lai