K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Ta có: \(y'=a\)\(cosx-b\)\(sinx+1\)

y đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)

                         \(\Leftrightarrow acosx-bsinx+1\ge0,\forall x\in R\)(*)

Theo bất đẳng thức Schwartz thì:

\(|acosx-bsinx|\le\sqrt{a^2+b^2},\forall x\)

\(\Leftrightarrow-\sqrt{a^2+b^2}\le acos-bsinx\le\sqrt{a^2+b^2},\forall x\)

\(\Leftrightarrow1-\sqrt{a^2+b^2}\le acos-bsinx+1\le1+\sqrt{a^2+b^2},\forall x\)

Do đó (*) \(\Leftrightarrow1-\sqrt{a^2+b^2}\ge0\)

\(\Leftrightarrow\sqrt{a^2+b^2}\le1\)

\(\Leftrightarrow a^2+b^2\le1\)

16 tháng 8 2017

y ' = 1 + m cos x - sin x = 1 - 2 m sin x - π 4

Đặt t = sin x - π 4 với t ∈ - 1 ; 1 ta có f 1 = 1 - 2 m t

Để hàm số đồng biến trên R thì

f t ≥ 0 ∀ t ∈ - 1 ; 1 ⇔ f - 1 ≥ 0 f 1 ≥ 0 ⇔ 1 + 2 m ≥ 0 1 - 2 m ≥ 0

⇔ m ≥ - 2 2 m ≤ 2 2 ⇔ - 2 2 ≤ m ≤ 2 2

Đáp án A

12 tháng 7 2017

Đáp án A

19 tháng 8 2018

Chọn C

Ta có

.

.

.

Để hàm số đã cho đồng biến trên , .

 

.

30 tháng 5 2021

C1: \(a.sinx+b.cosx=c\) 

Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\) 

Bạn áp dụng công thức trên sẽ tìm ra m

C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)

Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)

Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)

Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến

Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến

Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến

Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến

Đ/A: Ý D

(Toi nghĩ thế)

 

31 tháng 5 2021

thank u

NV
30 tháng 7 2021

a.

Hàm là hàm số bậc nhất khi:

\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

b.

Hàm đồng biến trên R khi:

\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)

a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)

hay \(m\ne\dfrac{1}{2}\)

b) Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

13 tháng 3 2019

Đáp án đúng : A

31 tháng 10 2019

a) m-m +2#0

b) m​2​ - m+2<0

C) m​2 - mm +2>0

4 tháng 8 2019


18 tháng 8 2018

Đáp án A

Ta có: 

Hàm số đồng biến trên R khi

Vậy có 5 giá trị nguyên của m