K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\)

\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

22 tháng 11 2016

Từ giả thiết ta suy ra ab=c2

Thay số vào ta có : \(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)

=> đcpcm

__cho_mình_nha_chúc_bạn_học _giỏi__ 

22 tháng 11 2016

\(THANKS\)\(VERY\)\(MUCH\)

29 tháng 1 2020

Ta có:

\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)

\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)

\(=\left(a+b+c\right)^2\)

\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)

7 tháng 12 2017

Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)

\(\Rightarrowđpcm\)

7 tháng 12 2017

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)

\(\Leftrightarrow a+b+c=abc\)

\(\RightarrowĐPCM\)

27 tháng 9 2016

a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)

\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)

\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)

cho 1/a+1/b+1/c=2  va :a+b+c=abc

.chung minh rang: 

.

10 tháng 12 2019

em hãy thay b2=ac vào biểu thức trên :

ta đổi được:

=a2+ac / ac+c2

=a *(a+c) / c *(a+c)

rút gon a+c ta được :a/c

tự kết luận nha 

chúc em học tốt

Y
23 tháng 5 2019

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)

\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)

\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)

=> đpcm

Đẳng thức xảy ra <=> a = b = c