tìm a, b ,c,d biết x^4 +x^3-x^2+ax +b=(x^2 +x -2)(x^2+cx+d) với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x4 + x3 + ax + b = (x2 + x - 2)(x2 + cx + d)
<=> x4 + x3 + ax + b = x4 + cx3 + dx2 + x3 + cx2 + dx - 2x2 - 2cx - 2d
<=> x4 + x3 + ax + b = x4 + (c + 1)x3 + (d + c - 2)x2 + (d - 2c)x - 2d
Đồng nhất hệ số:
c + 1 = 1
d + c - 2 = 0
d - 2c = a
-2d = b
<=> c = 0
d = 2 + c = 2
a = d - 2c = 2 - 2.0 = 2
b = -2.2 = -4
Vậy a = d = 2; c = 0; b = -4
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
Ta có:
\(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)
\(=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
\(\Rightarrow\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a\end{cases}}\)và \(-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=0\\d=1\\a=1\end{cases}}\)và \(b=-2\)
Vậy \(a=1\); \(b=-2\); \(c=0\); \(d=1\)
Bài làm:
Ta có: \(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)
\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+\left(c+1\right)x^3+\left(c+d-2\right)x^2+\left(d-2c\right)x-2d\)
Áp dụng phương pháp đồng nhất hệ số ta được:
c + 1 = 1 và c + d - 2 = -1 và d - 2c = a và -2d = b (Do viết PT bị lỗi nên mk viết kiểu này nhé)
=> c = 0 và d = 1 và a = 1 và b = -2
Vậy ta tìm được bộ số (a;b;c;d) thỏa mãn: (1;-2;0;1)
Nếu nhầm lẫn chỗ nào thì thông cảm cho mk nha