Cho △ABC, góc A=90 độ, AB=AC. Điểm K là trung điểm của BC. Từ C kẻ đường thẳng vuông góc với BC, cắt BA kéo dài tại E.
CM: EC//AK
Giusp mình giải với ạ!! Mình đang cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AKB\) và \(\Delta\)AKC có:
AK chung
AB = AC (gt)
KB = KC (K là trung điểm BC)
\(\Rightarrow\)\(\Delta\)AKB = \(\Delta\)AKC (c-c-c)
b) Do \(\Delta AKB\) = \(\Delta AKC\) (cmt)
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}\) và \(\widehat{AKC}\) là hai góc kề bù
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) \(=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\) AK \(\perp\) BC
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
ta có AB=AC
nên tam giác ABC là tam giác vuông cân
nen :góc B=góc BCA=45 độ
theo bài cho : góc BCE =90 độ
nên góc ACE=góc BCE - góc BCA =45 độ
ta có : góc BAC =CAE=90 độ
AC: chung
góc BCA=ACE=45 độ (cmt)
nên tam giác ABC=AEC (g.c.g )
suy ra :BC=CE
mà k là trung điểm của BC
nên AK là đường trung tuyến của tam giác ABC
Suy ra :BC =2AK=2*5=10
vậy :CE=BC=10 cm
****tick ****nha***
a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)
c,CEA +CBA=90 độ
ACB + ABC =90 độ
suy ra CEA = ACB
xét tam giác CAE và tam giác CAB
AC cạnh chung
CEA = ACB
suy ra tam giác ACE = ACB
suy ra CE= CB
a: Xét ΔABK và ΔACK có
AB=AC
AK chung
BK=CK
Do đó: ΔABK=ΔACK
Hình như bạn ơi! Chứng minh AK vuông góc với BC nó hơi dài i phẩy bạn ạ.
Chỉ cần sử dụng tam giác cân với ba đường là: đường cao, trung tuyến, phân giác, trung trực thì có thể => ra đc một trong bốn đường đó cg đc mà bạn. Chắc là nên sữa lại đoạn đó đi.
Cũng đúng ~ nhưng lm v nó hơi ngắn :)) <như vậy thì cho ∆ABC vuông lm deck j nữa nhỉ?