K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử...
Đọc tiếp

 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của   ACAB. 8)  Gọi P  là điểm di động trên đoạn AC, đường thẳng BP  cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC. 

0
). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  ; AC AB CB   cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F.  1)  Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2)  Gọi  M  là  một  điểm  bất  kì  trên  cung  lớn  BD   của  (O)  (M  khác  B  và  D).  Chứng  minh: . BMD OFD   3) ...
Đọc tiếp

). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  ; AC AB CB   cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F.  1)  Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2)  Gọi  M  là  một  điểm  bất  kì  trên  cung  lớn  BD   của  (O)  (M  khác  B  và  D).  Chứng  minh: . BMD OFD   3)  Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của   ACAB. 4)  Gọi P là điểm thay đổi  trên đoạn thẳng AC, đường thẳng BP   cắt  (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào? 

0
7 tháng 11 2015

Goi M là chân đường vuông góc từ E xuống BD
ΔABC∼ΔEMA(g.g)⇒ABEM=BCMA (1)
ΔBCD∼ΔMDE(g.g)⇒BCMD=BDME (2)
Vì AD=3AB suy ra BD=2AB ⇒BDME=2.ABME (3)
Từ (1),(2),(3) suy ra BCMD=2.BCMA => MA=2.MD => AD=3.MD
Lại có AD=3.AB => AD=3.MB => MB=MD
Tam giác BED có EM vừa là trung tuyến vừa là đường cao => Cân tại E (ĐPCM)

7 tháng 11 2015

có ai chơi ko

7 tháng 11 2015

pham duc le hoan vừa hok vừa chơi

11 tháng 12 2022

a: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

Xét (O) có

ΔAFC nội tiêp

AC là đường kính

Do đó: ΔAFC vuông tại F

Xét ΔHBA vuông tại B và ΔHFC vuông tại F có

góc BHA=góc FHC

DO đó: ΔHBA đồng dạng với ΔHFC

=>HB/HF=HA/HC

=>HB*HC=HF*HA

b: Kẻ EG vuông góc với DA

Xet tứ giác EDHA có

ED//HA

EA//HD

Do đó: EDHA là hình bình hành

=>EA=DH

=>ΔEAG=ΔHDB

=>AG=BD=2AB

=>B là trung điểm của AG

=>BG=GD

=>ΔEBD cân tại E

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)