tìm giá trị nhỏ nhất của biểu thức
(x-4)+17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
Ta có A= \(\frac{3x-17}{4-x}=\frac{3x-12-5}{4-x}\)\(=\frac{3x-12}{4-x}-\frac{5}{4-x}=-3-\frac{5}{4-x}\)
=>A \(< -3\)
=> Để A đạt Min => \(\frac{5}{4-x}\) phải đạt Max => \(4-x\)phải đạt Min
có B=4-x \(\le\)4
(lại có đk : 4-x \(\ne\)0=> x\(\ne4;\)/ 4-x\(>\)0 ( do nếu 4-x <0 => A>-3 => chắc chắn không đạt Min)và \(x\ge0\)(do nếu x<0 => B>4 ( B không đạt Min)
=> \(0< 4-x\le4\) mà x là giá trị nguyên => B có giá trị nhỏ nhất = 1
=> x=3
khi x= 3 => A=-8
Sai thì bảo lại mình nhé
a, Ta có: \(\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2-17\ge-17\)
\(\Rightarrow B\ge-17\)
Dấu "=" xảy ra <=> (x+1)2 = 0 <=> x = -1
Vậy GTNN của B là -17 khi x = -1
b, Ta có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow25-\left(x-2\right)^2\ge25\)
\(\Rightarrow B\ge25\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x = 2
Vậy GTLN của B là 25 khi x = 2
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
1) A = |x| + \(\frac{4}{17}\)
Ta có: |x| \(\ge0\)
=> \(\left|x\right|+\frac{4}{17}\ge\frac{4}{17}\)
hay A \(\ge\frac{4}{17}\)
- Dấu " = " xảy ra khi: x=0
Vậy GTNN của A = \(\frac{4}{17}\)khi x = 0
2) B=|X+2,8| - 6,9
Ta có: |x+2,8| \(\ge0\)
=> |x+2,8| - 6,9 \(\ge-6,9\)
hay B \(\ge-6,9\)
- Dấu " = " xảy ra khi: x + 2,8 = 0 => x = -2,8
Vậy GTNN của B = -6,9 khi x = -2,8
----Đúng 100%----
\(\left(x-4\right)+17\)
\(\Leftrightarrow\left(x-4\right)\le0\)
\(\Leftrightarrow\left(x-4\right)+17\le0\)
dấu ''='' xảy ra khi
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)