K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

  Cau 1:

Cau 2 : Chịu

1 tháng 10 2020

Ta có: 

\(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)

\(=\left(\frac{a-d}{b+d}+1\right)+\left(\frac{d-b}{c+b}+1\right)+\left(\frac{b-c}{a+c}+1\right)+\left(\frac{c-a}{d+a}+1\right)-4\)

\(=\frac{a+b}{b+d}+\frac{d+c}{c+b}+\frac{b+a}{a+c}+\frac{c+d}{d+a}-4\)

\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{c+b}+\frac{1}{d+a}\right)-4\)

\(\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4\) (Cauchy Schwars)

\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)

Dấu "=" xảy ra khi: a = b = c = d

Vậy Min(S) = 0 khi a = b = c = d

1 tháng 10 2020

Đúng như mình dự đoán.

Trắc Nghiệm:Câu 1: tam giác ABC vuông tại A có AB = 5 cm AC = 12 cm thì diện tích của tam giác ABC bằng:A.120cm2      B.17cm2      C.60cm2      D.30cm2Câu 2: Điều kiện để cho biểu thức \(\frac{2}{x-1}\)trở thành một phân thức khi:A.\(\frac{9-x^2}{x+1}\)B.\(\frac{x+1}{x^2-9}\)C.\(\frac{x-1}{x^2-9}\)D.\(\frac{x^2+9}{x+1}\)Tự luận:Câu 1 Cho phân thức \(\frac{3x+3}{x^2-1}\)a) Tìm điều kiện của x đề giá trị của phân thức được...
Đọc tiếp

Trắc Nghiệm:

Câu 1: tam giác ABC vuông tại A có AB = 5 cm AC = 12 cm thì diện tích của tam giác ABC bằng:

A.120cm2      B.17cm2      C.60cm2      D.30cm2

Câu 2: Điều kiện để cho biểu thức \(\frac{2}{x-1}\)trở thành một phân thức khi:

A.\(\frac{9-x^2}{x+1}\)B.\(\frac{x+1}{x^2-9}\)C.\(\frac{x-1}{x^2-9}\)D.\(\frac{x^2+9}{x+1}\)

Tự luận:

Câu 1 Cho phân thức \(\frac{3x+3}{x^2-1}\)

a) Tìm điều kiện của x đề giá trị của phân thức được xác định. Tìm giá trị của x để phân thức có gía trị bằng -2.

b) Tìm giá trị của x để phân thức có giá trị là số nguyên.

Câu 2: Cho tam giác ABC. Gọi D,M,E theo thứ tự là trung điểm của AB,BC,CA.

b) Tam giác ABC có điều kiện gì thì tứ giác ADME là hình chữ nhật?

c) Nếu M di chuyển trên cạnh BC thì trung điểm của AM di chuyển trên đường nào?

 

Giải hộ mk vs !!! Mk cần gấp lắm...

1
28 tháng 12 2018

bài 1 ( tự luận ) 

a, Để \(\frac{3x+3}{x^2-1}\)Xác định 

\(\Rightarrow\orbr{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne-1\\x\ne1\end{cases}}\)

\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)

Thay \(\frac{3}{x-1}=2\)......

\(c,\)Để \(\frac{3}{x-1}\)nguyên

\(\Rightarrow3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(x-1=1\Rightarrow x=2\)

\(x-1=-1\Rightarrow x=0\)

\(x-1=3\Rightarrow x=4\)

\(x-1=-3\Rightarrow x=-2\)

\(KL:x\in\left\{0;4;\pm2\right\}\)

24 tháng 5 2017

Đặt \(b+c+d=x;c+d+a=y;a+b+d=z;a+b+c=t\)

\(a=\frac{y+z+t-2x}{3}\)

Tương tự :\(b=\frac{x+z+t-2y}{3}\)

\(c=\frac{x+y+t-2z}{3}\)

\(d=\frac{y+x+z-2t}{3}\)

Đặt \(M=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

Thay vào biểu thức ta có :

\(M=\frac{\frac{y+z+t-2x}{3}}{x}+\frac{\frac{x+z+t-2y}{3}}{y}+\frac{\frac{x+y+t-2z}{3}}{z}+\frac{\frac{y+x+z-2t}{3}}{t}\)

\(=\frac{1}{3}\left(\frac{y+z+t-2x}{x}+\frac{x+z+t-2y}{y}+\frac{x+y+t-2z}{z}+\frac{x+z+y-2t}{t}\right)\)

\(=\frac{1}{3}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{t}{x}+\frac{x}{t}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)+\left(\frac{t}{y}+\frac{y}{t}\right)+\left(\frac{t}{z}+\frac{z}{t}\right)-8\right]\)

Sử dụng BĐT Cô-si suy ra \(Min_M=\frac{1}{3}.\left(12-8\right)=\frac{4}{3}\)

Dấu bằng xảy ra khi x = y = z = t hay \(b+c+d=a+b+c=c+d+a=b+d+a\) ( tự giải ra a=b=c=d)

Đặt \(N=\frac{b+c+d}{a}+\frac{c+a+d}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)

\(=\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{d}{a}+\frac{a}{d}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{d}{c}+\frac{c}{d}\right)+\left(\frac{b}{d}+\frac{d}{b}\right)\)

Sử dụng Cô-si ra \(N\ge12\)

Dấu bằng xảy ra khi a=b=c=d ( tự giải ).

Do đó \(S=M+N\ge\frac{4}{3}+12=13\frac{1}{3}\)

Dấu bằng xảy ra khi \(a=b=c=d\)

\(\)

15 tháng 2 2020

Áp dụng bđt cô - si cho 2 số không âm, ta được:

\(S=\text{ Σ}_{a,b,c,d}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\text{ Σ}_{a,b,c,d}\frac{8}{9}.\frac{b+c+d}{9a}\)

\(\ge8\sqrt[8]{\frac{a}{b+c+d}.\frac{b}{c+d+a}.\frac{c}{a+b+d}.\frac{d}{a+b+c}}\)\(\sqrt{\frac{b+c+d}{9a}.\frac{c+d+a}{9b}.\frac{a+b+d}{9c}.\frac{a+b+c}{9d}}\)

\(+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{c}{b}+\frac{d}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)

\(\ge\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}\)

Đẳng thức xảy ra khi a = b = c = d

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

30 tháng 4 2017

M không có giá trị tự nhiên vì để m là số tự nhiên thì các phân số phải là số tự nhiên mà tử số lớn hơn mẫu số nên số đó không phải là số tự nhiên 

1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào...
Đọc tiếp

1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.

2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)


3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào bằng 0?

4) Tìm hai số x và y sao cho x + y = xy = x : y (y khác 0).

5) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: a2 + a - p = 0

6) Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA : MB : MC = 1:2:3. Tính số đo góc AMB ?

7) Tìm x,y biết: \(\frac{6}{\left(x-1\right)^2+2}=|y-1|+|y-2|+|y-3|+1\)

8) Cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
                So sánh M với \(\frac{1}{12}\)
9) Cho các số nguyên dương a,b,c,d,e thỏa mãn: a2 + b2 + c2 + d2 + e2 chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số.

10) Cho biểu thức: A = \(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
                       Tính giá trị của biểu thức B = \(4|A|+\frac{1}{3^{100}}\)

9) Cho tam giác ABC có góc A bằng \(^{90^o}\). Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BC + DE.

10) Tam giác ABC cân ở B có góc ABC = \(80^o\). I là một điểm nằm trong tam giác, biết góc IAC = \(10^o\)và góc ICA = \(30^o\). Tính góc AIB = ?

 

9
10 tháng 2 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Thay vào M ta có 

\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

P/s : hỏi từng câu thôi 

10 tháng 2 2019

Tại bận -.-

13 tháng 6 2020

Từ giả thiết : \(abc=b+2c\)

\(\Leftrightarrow\frac{b+2c}{bc}=a\)

\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)

\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Áp dụng (1) vào \(P\)\(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)

14 tháng 6 2020

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)

\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)