Tìm x,y,z biết: \(\frac{2}{3}\) \(\cdot x=\frac{3}{4}\)\(\cdot y=\frac{5}{6}\)\(\cdot z\)và \(x^2+y^2+z^2=724\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Leftrightarrow\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}=\frac{18\left(-x+y+z\right)}{-33+4+5}=\frac{18\cdot\left(-120\right)}{-24}=90\)
Do đó:
\(\frac{-18x}{-33}=90\Leftrightarrow x=165\)
\(\frac{18y}{4}=90\Leftrightarrow y=20\)
\(\frac{18z}{5}=90\Leftrightarrow z=25\)
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)
Kb với minh nha!
\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)
\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)
vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2 và z < x < y
ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH
TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4
TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3
TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2
nhớ cho mik nha
Ta có:
\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)
Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)
Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)
Với \(z-5=0\)\(\Rightarrow.....\)
B tự làm nốt nhé
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).
Vậy \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)
=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)
=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Đến đây bạn tự làm tiếp
\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Theo tính chất của dãy tỉ số bằng nhau thì
\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)
\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)
\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)