K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

grtfgvgg

15 tháng 9 2017

ta có \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\)

cậu tính ra rồi được một đa thức =0

ta tách B để có các hạng tử như trên rồi tinh tiếp

NV
18 tháng 10 2019

1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)

\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)

\(B=1945\)

b/ Tương tự:

\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)

\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)

\(P=2016\)

Bài 3: 

a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:
a) 

\(\lim\limits_{x\to +\infty}\frac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}=\lim\limits_{x\to +\infty}\frac{\sqrt[3]{1+\frac{2}{x}-\frac{4}{x^2}+\frac{1}{x^3}}}{\sqrt{2+\frac{1}{x}-\frac{8}{x^2}}}\)

\(=\frac{1}{\sqrt{2}}\)

b) 

\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2-2x+4}-x}{3x-1}=\lim\limits_{x\to -\infty}\frac{\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1}{-3+\frac{1}{x}}=\frac{-1}{3}\)

26 tháng 6 2021

a)đk:`2x-4>=0`

`<=>2x>=4`

`<=>x>=2.`

b)đk:`3/(-2x+1)>=0`

Mà `3>0`

`=>-2x+1>=0`

`<=>1>=2x`

`<=>x<=1/2`

c)`đk:(-3x+5)/(-4)>=0`

`<=>(3x-5)/4>=0`

`<=>3x-5>=0`

`<=>3x>=5`

`<=>x>=5/3`

d)`đk:-5(-2x+6)>=0`

`<=>-2x+6<=0`

`<=>2x-6>=0`

`<=>2x>=6`

`<=>x>=3`

e)`đk:(x^2+2)(x-3)>=0`

Mà `x^2+2>=2>0`

`<=>x-3>=0`

`<=>x>=3`

f)`đk:(x^2+5)/(-x+2)>=0`

Mà `x^2+5>=5>0`

`<=>-x+2>0`

`<=>-x>=-2`

`<=>x<=2`

26 tháng 6 2021

a, ĐKXĐ : \(2x-4\ge0\)

\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)

Vậy ..

b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow-2x+1>0\)

\(\Leftrightarrow x< \dfrac{1}{2}\)

Vậy ..

c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)

\(\Leftrightarrow-3x+5\le0\)

\(\Leftrightarrow x\ge\dfrac{5}{3}\)

Vậy ...

d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)

\(\Leftrightarrow-2x+6\le0\)

\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)

Vậy ...

e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow x-3\ge0\)

\(\Leftrightarrow x\ge3\)

Vậy ...

f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow-x+2>0\)

\(\Leftrightarrow x< 2\)

Vậy ...

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)