K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :

Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế 

=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế 

=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế 

=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270 

=> ( x +2). ( 200/x + 2) = 264

=> ( x +2). ( 200 +2x ) = 264x 

=> 2x2 + 400 + 204x = 264x 

=> 2x2 - 60x + 4000 = 0 

=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }

6 tháng 6 2017

1 dãy là bao nhiêu ghế

26 tháng 4 2019

đoán xem xme \

28 tháng 6 2016

undefined

31 tháng 8 2016

ban đầu hội trương có 12 dãy ghế because:

số người đến họp dư la 52 nguoi

52 nguoi ngoi 2 day ghe va them 2 cai 

50 nguoi 2 day ghe

1 day ghe 25 nguoi

day ghe ban dau hoi truong la 300/25=12 day ghe leuleu

27 tháng 6 2023

Gọi số dãy ghế dự định lúc đầu là \(x\) (dãy)

ĐK: \(x>20;x\in\mathbb N^*\)

Số ghế trong một dãy dự định lúc đầu là: \(\dfrac{120}{x}\) (ghế)

Thực tế số người tham dự là 160 và số dãy ghế là: \(x+2\)

⇒ Số ghế trong một dãy là: \(\dfrac{160}{x+2}\) (ghế)

Vì thực tế mỗi dãy ghế phải kê thêm 1 ghế so với dự định nên ta có pt:

\(\dfrac{160}{x+2}-\dfrac{120}{x}=1\)

.... (Tự giải pt)

\(\Leftrightarrow x^2-38+240=0\)

\(\Leftrightarrow\left(x-8\right)\left(x-30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(\text{loại}\right)\\x=30\left(\text{TM}\right)\end{matrix}\right.\)

Vậy số dãy ghế dự định lúc đầu là 30 dãy ghế.

10 tháng 6 2017

Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x  và  x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
 308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại)  vì 250 không chia hết cho 30@x_2=25 (nhận))┤ 
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

10 tháng 6 2017

Cách 1:

Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0) 
Ta có tổng cộng 250 người nên x.y =250 (1) 
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2) 
Từ (1) và (2) ta có hệ:

 

Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

2 tháng 6 2021

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2021

12 hàng

9 tháng 1 2022

             số ghế1 hàng      số ghế 1 dãy      tổng số ghế

dự tính   X                             \(\dfrac{360}{x}\)                  360

thực tế   X+1                         \(\left(\dfrac{360}{X}\right)+1\)      400

gọi số ghế của 1 hàng là x (dự tính)

=> số ghế của 1 dãy là \(\dfrac{360}{x}\)

thêm 1 hàng theo thực tế X+1

mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)

tổng số ghế thực tế là 400 nên ta có 

\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)

=> x=24

vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15

 

 

Gọi số dãy ghế ban đầu trong phòng là x(dãy)(ĐK: x>4)

Số dãy ghế lúc sau là x+1(dãy)

Số người ngồi trên 1 dãy ghế lúc đầu là \(\dfrac{320}{x}\left(người\right)\)

Số người ngồi trên 1 dãy ghế lúc sau là \(\dfrac{420}{x+1}\left(người\right)\)

Theo đề, ta có: \(\dfrac{420}{x+1}-\dfrac{320}{x}=4\)

=>\(\dfrac{420x-320x-320}{x\left(x+1\right)}=4\)

=>4x(x+1)=100x-320

=>x(x+1)=25x-80

=>x^2+x-25x+80=0

=>x^2-24x+80=0

=>(x-4)(x-20)=0

=>\(\left[{}\begin{matrix}x=4\left(loại\right)\\x=20\left(loại\right)\end{matrix}\right.\)

Vậy: ban đầu có 20 dãy ghế