K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

Trả lời:

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow x^2+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow x^2+\left(x+y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy \(\left(x,y\right)=\left(0,0\right)\)

Học tốt 

29 tháng 7 2020

2x2+2xy+y2=0

=>x2+(x2+2xy+y2)=0    (HĐT thứ 1)

=>x2+(x+y)2=0

Vì x2 >= 0 với mọi x

(x+y)2>=0 với mọi x,y

=>x2+ (x+y)2 >=0 với mọi x,y

Dấu "=" xảy ra khi:

<=>x2=0 hoặc (x+y)2=0

<=>x=0 hoặc x+y=0

<=>x=0 hoặc y=0

Vậy ...

NV
12 tháng 9 2021

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)

12 tháng 9 2021

\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\) 

Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)

Dấu"=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)

Vậy x = 6 và y = -8

 

 

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn

10 tháng 10 2021

\(a.\left(x^2+4x+4\right)+\left(x^2-6x+9\right)=2x^2+14x\)

\(x^2+4x+4+x^2-6x+9-2x^2-14x=0\)

\(-18x+13=0\)

\(x=\dfrac{13}{18}\)

Vậy \(S=\left\{\dfrac{13}{18}\right\}\)

\(b.\left(x-1\right)^3-125=0\)

\(\left(x-1\right)^3=125\)

\(x-1=5\)

\(x=6\)

Vậy \(S=\left\{6\right\}\)

\(c.\left(x-1\right)^2+\left(y +2\right)^2=0\)

\(Do\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(S=\left\{1;-2\right\}\)

\(d.x^2-4x+4+x^2-2xy+y^2=0\)

\(\left(x-2\right)^2+\left(x-y\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy \(S=\left\{2;2\right\}\)

21 tháng 10 2021

a) \(2x^2+2x+1=0\)

\(\Rightarrow2x^2+2x=-1\)

\(\Rightarrow2x\left(x+1\right)=-1\)

⇒ Pt vô nghiệm

 

 

21 tháng 10 2021

a: \(2x^2+2x+1=0\)

\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)

Vì Δ<0 nên phương trình vô nghiệm

12 tháng 1 2021

Ta có: \(P=2x-2xy-2x^2-y^2\)

\(P=-x^2-2xy-y^2-x^2+2x\)

\(P=-\left(x^2+2xy+y^2\right)-\left(x^2-2x+1\right)+1\)

\(P=-\left(x+y\right)^2-\left(x-1\right)^2+1\)

\(P=-\left[\left(x+y\right)^2+\left(x-1\right)^2\right]+1\le1\forall x;y\)

Vậy GTLN của P là 1 khi x=-1; y=1. 

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?