thực hiện phép tính
(1/2)^5 * 2^5-(1/2019-1/2020+1/2021)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-1-2-3-4-5-6-....-80
=(-1)+(-2)+(-3)+(-4)+(-5)+(-6)+...+(-80)
Khoảng cách giữa các số:(-1)-(-2)=1
Tổng các số hạng:(-1)-(-80)+1=80 số
Tổng:[(-1)+(-80)].80:2= -3240
=>-1-2-3-4-5-6+......-80=-3240
b,1-2+3-4+5-6+......+2021-2022
=(1-2)+(3-4)+(5-6)+...+(2021-2022)
=(-1)+(-1)+(-1)+...+(-1)
Tổng số cặp là:
(2022-1+1):2=1011 cặp
-1.1011=-1011
=>1-2+3-4+5-6+......+2021-2022= -1011
c, Đề bài sai
d,-4-8-12-16-.......-2020
=-4+(-8)+(-12)+(-16)+...+(-2020)
Khoảng cách giữa các số:-4-(-8)=4
Tổng các số hạng:[-4-(-2020]:4+1=505 số
Tổng:[-4+(-2020)].505:2=-511060
=>-4-8-12-16-.......-2020=-511060
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
a: \(61\cdot45+61\cdot23-68\cdot51\)
\(=61\left(45+23\right)-68\cdot51\)
\(=68\cdot61-68\cdot51\)
\(=68\left(61-51\right)=68\cdot10=680\)
b: \(3\cdot5^2-\left(75-4\cdot2^3\right)\)
\(=75-75+4\cdot8\)
\(=4\cdot8=32\)
c: \(36:\left\{2^2\cdot5-\left[30-\left(5-1\right)^2\right]\right\}\)
\(=\dfrac{36}{20-30+4^2}\)
\(=\dfrac{36}{-10+16}=\dfrac{36}{6}=6\)
d: \(\left(12\cdot49-3\cdot2^2\cdot7^2\right):\left(2020\cdot2021\right)\)
\(=\dfrac{\left(12\cdot49-12\cdot49\right)}{2020\cdot2021}=0\)
\(\left(\frac{1}{2}\right)^5.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5}{2^5}.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5.2^5}{2^5}-\left(\frac{2020.2021}{2019.2020.2021}-\frac{2019.2021}{2019.2020.2021}+\frac{2019.2020}{2019.2020.2021}\right)\)
\(=1^5-\left(\frac{2020.2021-2019.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{\left(2020-2019\right).2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.\left(1+2019\right)}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.2020}{2019.2020.2021}\right)\)
\(=1-\frac{1+2020}{2019.2021}\)
\(=1-\frac{2021}{2019.2021}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)
Chúc bạn học tốt