K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Lời giải:

Vì $x+y+z=0$ nên $x+y=-z$. Do đó:

$M=2(x^3+y^3)+2z(z^2-3xy)$

$=2[(x+y)^3-3xy(x+y)]+2z^3-6xyz$

$=2[(-z)^3+3xyz]+2z^3-6xyz=-2z^3+6xyz+2z^3-6xyz=0$

10 tháng 7 2018

Cái nè k cần làm nhé

a: \(=-3xy^2z^3:\dfrac{3}{4}xyz=-3\cdot\dfrac{4}{3}\cdot\left(x:x\right)\cdot\left(y^2:y\right)\cdot\left(z^3:z\right)=-4yz^2\)

b: \(=\left(2:\dfrac{3}{4}\right)\cdot\dfrac{\left(x+y\right)^3}{\left(x+y\right)^2}=\dfrac{8}{3}\left(x+y\right)\)

c: \(=\left(x+y-z\right)^3\)

3 tháng 1 2018

dùng hệ số bất định ấy ,lười lắm

4 tháng 1 2018

p. tích thành tổng 2 bình phương rồi mincopxki

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

1 tháng 1 2016

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

NV
6 tháng 4 2022

(S) có tâm \(I\left(m-3;2m;-1\right)\)

Để I thuộc (P) \(\Rightarrow m-3+2m-2.\left(-1\right)-3=0\)

\(\Rightarrow3m-4=0\Rightarrow m=\dfrac{4}{3}\)