K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Lời giải:

Ta sẽ chứng minh PT $ax+\frac{b}{x}=c\sqrt{2}$ có nghiệm $x\neq 0$.

Với $x\neq 0$

PT $ax+\frac{b}{x}=c\sqrt{2}$

$\Leftrightarrow ax^2-c\sqrt{2}x+b=0$

$\Delta=(c\sqrt{2})^2-ab=2c^2-4ab=2[c^2-(a^2+b^2)]+2(a^2+b^2-2ab)$
$=2[c^2-(a^2+b^2)]+2(a-b)^2>0$ với mọi $c^2> a^2+b^2$
Do đó PT luôn có nghiệm.

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
NV
30 tháng 5 2020

\(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-3-\sqrt{9}}{2}=m-3\\x_2=\frac{2m-3+\sqrt{9}}{2}=m\end{matrix}\right.\)

\(\Rightarrow0< m-3< m< 5\)

\(\Rightarrow3< m< 5\)