Cho A= 1/101 + 1/102 +....+ 1/150. Chứng minh: 1/3 < A < 1/2. Ai làm được có thưởng nha!!!
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
1
1 tháng 6 2021
- A = 1/101 + 1/102 + 1/103 + ... + 1/150
Ta có số hạng tử là (150 -101)/1+1=50 (hạng tử)
=>A>1/150 x 50
=>>50/150=1/3
=.> A>1/3
A = 1/101 + 1/102 + 1/103 + ... + 1/150
PA
0
HV
0
NL
2
FC
12 tháng 7 2017
*B=1/101+1/102+...1/180<1/180+1/180+...1... ( 80 sh)=80/180=4/9
C= 1/181+1/182+...1/200< 20/200=1/10
A=B+C<4/9+1/10=40/90+9/90=49/90 mà 49/90<3/4 ( quy đồng sẽ biết)
Vậy A<3/4
** D= 1/101+1/101+...1/150>50.(1/101)=50/101>1...
E= 1/151+1/152+...+1/200> 50.(1/151)=50/151>1/3
D+E>1/3+1/3=2/3 mà 2/3>5/8
Vậy A>5/8
6 tháng 3 2016
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
Ta có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 số hạng)
\(=50.\frac{1}{150}=\frac{1}{3}\)
=> \(A>\frac{1}{3}\)(1)
Lại có : \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(50 Số hạng 1/100)
\(=50.\frac{1}{100}=\frac{1}{2}\)
=> \(A< \frac{1}{2}\)(2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)(đpcm)