K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2020

Đề bài sai

Ví dụ: \(a=b=1\) đều ko chia hết cho 5

\(a^4+b^4=2\) cũng không chia hết cho 5 nốt

20 tháng 4 2016

khá là khó

16 tháng 6 2017

Bài này lớp 6 mà bạn

Đặt c1=a1-b1, ... , c5=a5-b5.

Có c1+ c+ ...+ c5

= (a1-b1)+(a2-b2)+...+(a5-b5)

= (a1+a2+...+a5)-(b1+b2+...+b5)

=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)

=> Trong 5 số c1,...,ccó một số chẵn vì từ c1 đến c5 có 5 số

=> Trong các số a1-b1,...,a2-bcó một số chẵn

Vậy ... (đpcm)

a) Không

b) Không

c) Có

14 tháng 7 2021

\(a\)) Sai 

\(b\)) Sai 

\(c\)) Đúng

20 tháng 6 2019

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

20 tháng 6 2019

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)

10 tháng 9 2021

a) Không

b) Không

c) Có

10 tháng 9 2021

a) Không

VD: 8 ⋮ 2 nhưng ko chia hết cho 5

b) Không

VD: 15 ⋮ 5 nhưng ko chia hết cho 2

b) Có

16 tháng 5 2016

Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4

Giả sử x chia hết cho 5 => ĐPCM

Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5

Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5

16 tháng 2 2023

đpcm là gì

 

10 tháng 8 2015

           

19 tháng 10 2016

a=5n+1

b=5k+2

a^2=1 ﴾mod 5﴿

b^2=4 ﴾mod5﴿

﴾a^2+b^2﴿=0 ﴾mod 5﴿

không được dùng thì khai triển ra

a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2

25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5 

chia hết mà còn dư ak bạn ~!~

`a, 350, 222, 456, 800`

`b, 125, 350, 555, 800`

`c, 350, 800`

`d, 222, 456`

`e, 125, 555`

`f, 222, 555, 456`

`g, 350, 125, 800

`g, 350, 125, 800`

`h, 222, 456`

24 tháng 2 2017

a) Chia hết cho 2: 500; 580

Chia hết cho 5: 540; 550

Chia hết cho 3: 300; 360

Chia hết cho 9: 540; 450

b) Vừa chia hết cho 2 vừa chia hết cho 5: 500; 600

c) Chia hết cho 5 nhưng không chia hết cho 2: 405; 505