làm giùm bài 2 a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+6x+9}-1=2x\)
\(\sqrt{\left(x^2+2.x.3+3^2\right)}-1=2x\)
\(\sqrt{\left(x+3\right)^2}-1=2x\)
\(x+3-1=2x\)
\(x+2=2x\)
\(x=2\)
\(\Leftrightarrow\sqrt{x^2+6x+9}=2x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1\ge0\\x^2+6x+9=\left(2x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x^2+6x+9=4x^2+4x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\3x^2-2x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x=2\)
\(\frac{1}{45}x\frac{12}{78}x100\)
=\(\frac{1}{45}x\frac{2}{13}x100\)
= \(\left(\frac{1}{45}x100\right)\frac{2}{13}\)
=\(\frac{20}{9}x\frac{2}{13}\)
= \(\frac{40}{117}\)
Được vậy bạn giải giùm mình nha đề bài nè :Tính hợp lý(nếu có thể) a)7^5:7^3+3^2.2^3-2009^() b)5^3.52+5^3.7^2-5^3 c)[130-3.(5.2^4-5^2.2)]2^3 d)10+12+14+....+148+150 Tìm x€N a)8.(x-5)+17=17 b)125-5.(3x-1)=5^5:5^3 c)4^x+1 +4^()=65
\(2,\\ a,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(3x+1\right)^2}=1-2x\\ \Leftrightarrow\left|3x+1\right|=1-2x\Leftrightarrow\left[{}\begin{matrix}3x+1=1-2x\left(x\ge-\dfrac{1}{3}\right)\\3x+1=2x-1\left(x< -\dfrac{1}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\\ b,ĐK:x\ge4\\ PT\Leftrightarrow6\cdot\dfrac{1}{3}\sqrt{x-4}+\dfrac{2}{5}\cdot5\sqrt{x-4}=2\sqrt{x-4}+10\\ \Leftrightarrow2\sqrt{x-4}=10\Leftrightarrow\sqrt{x-4}=5\\ \Leftrightarrow x-4=25\Leftrightarrow x=29\left(tm\right)\)
a, +/ Có \(A=4x-x^2+3=4x-x^2+4-1\)
\(=-\left(-2.2x+x^2+2^2\right)+1=1-\left(x-2\right)^2\)
do \(\left(x-2\right)^2\ge0\forall x\in R\Rightarrow A\le1\)
\(\Rightarrow maxA=1\)tại \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy max A=1 tại x=2
+/ Có \(B=x-x^2=2.\frac{1}{2}x-x^2-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
\(\Rightarrow A\le\frac{1}{4}\)do\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow maxB=\frac{1}{4}\)tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy max B =\(\frac{1}{4}\)tại x=\(\frac{1}{2}\)
giúp tui với pleas
Bài 3:
a: Xét ΔABC có
\(\dfrac{BE}{AB}=\dfrac{CF}{CA}\)
Do đó: EF//BC
Xét tứ giác BEFC có EF//BC
nên BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân