cho a+b+c=0.cmr ab+2ac-abc+bc-\(a^2c-ac^2=-a^2-c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em
Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html
Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)
Vậy ta có điều phải chứng minh.
Câu 2. Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz
\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)
Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\) và \(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)
Cộng ba bất đẳng thức lại ta được
\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\) (ĐPCM).
Câu hỏi này không phù hợp với lớp 2 các em nhé. Khi đăng câu hỏi thfi các em cần đăng đúng với khối lớp để được hỗ trợ tốt nhất.
\(c^2+2\left(ab-bc-ac\right)\Leftrightarrow-c^2=\left(ab-bc-ac\right)\)
Ta có : \(2a^2-2ac+c^2=a^2-c^2+c^2+\left(a-c\right)^2=a^2+c^2+2\left(ab-bc-ac\right)+\left(a-c\right)^2\)
\(=\left(a^2-2ac+c^2\right)+2b\left(a-c\right)+\left(a-c\right)^2=\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2\)
\(=\left(a-c\right)\left(2a-2c+2b\right)=2\left(a-c\right)\left(a+b-c\right)\)
Tương tự ở mẫu số ta cũng có : \(2b^2-2bc+c^2=2\left(b-c\right)\left(a+b-c\right)\)
\(\Rightarrow\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{2\left(a-c\right)\left(a+b-c\right)}{2\left(b-c\right)\left(a+b-c\right)}=\frac{a-c}{b-c}\)
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
Xét tổng: \(ab+2ac-abc+bc-a^2c-ac^2+a^2+c^2\)ta có:
\(ab+2ac-abc+bc-a^2c-ac^2+a^2+c^2\)
\(=\left(a^2+2ac+c^2\right)+\left(ab+bc\right)-\left(abc+a^2c+ac^2\right)\)
\(=\left(a+c\right)^2+b\left(a+c\right)-ac\left(a+b+c\right)\)
\(=\left(a+c\right)\left(a+c+b\right)-ac\left(a+b+c\right)\)
mà \(a+b+c=0\)( giả thiết )
\(\Rightarrow ab+2ac-abc+bc-a^2c-ac^2+a^2+c^2=0\)
hay \(ab+2ac-abc+bc-a^2c-ac^2=-a^2-c^2\)( đpcm )