K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

Oki bn

26 tháng 7 2020

*Góp ý : Bạn nên đặt câu hỏi bằng thanh công cụ ở trên để rõ ràng và chính xác hơn và bạn cũng nên ghi đề bài nữa nha .

( vì câu hỏi như vậy không rõ ràng nên sẽ bị xóa sau khi bạn đọc ạ )

Ta có: \(\left(2\sqrt{112}+5\sqrt{7}+2\sqrt{63}-2\sqrt{28}\right)\cdot\sqrt{7}\)

\(=\left(8\sqrt{7}+5\sqrt{7}+6\sqrt{7}-4\sqrt{7}\right)\cdot\sqrt{7}\)

\(=15\sqrt{7}\cdot\sqrt{7}\)

=105

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

29 tháng 9 2020

a) đk: \(x\ge2\)

Ta có: \(\sqrt{x}+\sqrt{x-2}=2\sqrt{x-1}\) (đã sửa đề)

\(\Leftrightarrow x+2\sqrt{x\left(x-2\right)}=4\left(x-1\right)\)

\(\Leftrightarrow3x-4=2\sqrt{x^2-2x}\)

\(\Leftrightarrow9x^2-24x+16=4\left(x^2-2x\right)\)

\(\Leftrightarrow5x^2-16x+16=0\)

\(\Leftrightarrow5\left(x^2-\frac{16}{5}x+\frac{64}{25}\right)+\frac{16}{5}=0\)

\(\Leftrightarrow5\left(x-\frac{8}{5}\right)^2=-\frac{16}{5}\) vô lý

=> PT vô nghiệm

29 tháng 9 2020

b) Đề chắc là: \(x^2+x+12=\sqrt{36}\)

\(\Leftrightarrow x^2+x+12-6=0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\) vô lý

=> PT vô nghiệm

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc.

13 tháng 8 2020

Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)

Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)

Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)

Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu 

Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)

Hay viết cách khá là \(A>B\)

13 tháng 8 2020

A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

6 tháng 10 2018

có sự nhầm lẫn gì đó thì phải hoặc ko

căn 31+ căn 17+ căn 3> 11

căn 31+ căn 7 +căn 3> 11

căn 31+ căn 17 +căn 3= căn 51 ko biến đổi được bỏ căn đi thì 51 >11

câu tiếp theo tương tự

6 tháng 10 2018

Xét thấy: \(\hept{\begin{cases}31< 36\\7< 9\\3< 4\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{31}< \sqrt{36}=6\\\sqrt{7}< \sqrt{9}=3\\\sqrt{3}< \sqrt{4}=2\end{cases}}} \)

\(\Rightarrow\sqrt{31}+\sqrt{7}+\sqrt{3}< 6+3+2=11\)

Vậy: .......

NV
14 tháng 8 2020

\(A=\sqrt{4+\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{8+2\sqrt{7}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}\)

\(B=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\sqrt{2}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}+2}{\sqrt{2}}=\frac{\sqrt{7}-1+2}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}\)

\(\Rightarrow A=B\)