K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2020

Do vế phải dương nên vế trái dương \(\Rightarrow m>n\)

Pt tương đương: \(2^n\left(2^{m-n}-1\right)=256\)

Do \(m>n\Rightarrow m-n\ge1\Rightarrow2^{m-n}\) chẵn \(\Rightarrow2^{m-n}-1\) lẻ

Mà 256 có duy nhất 1 ước lẻ là 1

\(\Rightarrow2^{m-n}-1=1\Rightarrow m-n=1\)

\(\Rightarrow\left\{{}\begin{matrix}m-n=1\\2^n.1=256=2^8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=8\\m=9\end{matrix}\right.\)

4 tháng 12 2021

x,y ở đâu :))?

4 tháng 12 2021

2m-2n=256
2m-2n=28
m-n=8

4 tháng 12 2021

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

18 tháng 7 2017

Ta có:

2m - 2n = 28

=> Cặp m;n thỏa mãn là:

 ( 9;8 ).

18 tháng 7 2017

m=9 ; n=8 tk cho tớ!!!!!!!!!!!!!!!!!

17 tháng 7 2021

Ta có n2 + 2n - 8 = (n + 4)(n - 2)

Vì n > 0 => n + 4 > 0

=> Để n2 + 2n - 8 là số nguyên tố 

thì n - 2 = 1 => n = 3 

Thử lại 32 + 2.3 - 8 = 7 (đúng)

Vậy n = 3 thì n2 + 2n - 8 là số nguyên tố  

19 tháng 12 2015

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)